Abstract

In the current study, a method of particular thermally induced phase separation (TIPS) of liquid crystals (LCs) and polymers is presented. The method involves a combination of dissolution process and TIPS. The LCs and poly(N-vinyl carbazole) (PVK) play the roles of solvent and solute, respectively, during the processes of particular TIPS. The nematic LC sample fabricated by two substrates coated with uniform PVK films is heated and then cooled, generating the rough PVK layers onto the surfaces of the substrates. The LC sample having rough PVK layers produces micron-sized, multiple domains of disordered LCs that can scatter incident light. Additionally, an application of a scattering mode light shutter, having the advantages of low driving voltage, polarization-independent scattering, fast response, high contrast ratio, and being polarizer free, is reported.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
    [CrossRef]
  2. R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2(11), 112401 (2009).
    [CrossRef]
  3. H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
    [CrossRef]
  4. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17(14), 11926–11934 (2009).
    [CrossRef] [PubMed]
  5. K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
    [CrossRef] [PubMed]
  6. J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
    [CrossRef]
  7. A. Y. G. Fuh and O. Caporaletti, “Polymer dispersed nematic liquid crystal films: The density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66(11), 5278–5284 (1989).
    [CrossRef]
  8. Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
    [CrossRef]
  9. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).
  10. A. Y. G. Fuh, C. C. Chen, C. K. Liu, and K. T. Cheng, “Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals,” Opt. Express 17(9), 7088–7094 (2009).
    [CrossRef] [PubMed]
  11. G. Z. Liu, D. L. Xia, W. J. Yang, and Z. Q. Huang, “The surface rubbing effect on morphologies of LC droplets and electro-optic properties of flexible PDLC films,” Sci. China, Ser. Biol. Chem. 52, 2329–2335 (2009).
  12. K. J. Yang and D. Y. Yoon, “Electro-optical characteristics of dye-doped polymer dispersed liquid crystals,” J. Ind. Eng. Chem. 17(3), 543–548 (2011).
    [CrossRef]
  13. A. Golemme, B. Kippelen, and N. Peyghambarian, “Highly efficient photorefractive polymer-dispersed liquid crystals,” Appl. Phys. Lett. 73(17), 2408–2410 (1998).
    [CrossRef]
  14. S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
    [CrossRef]
  15. C. Y. Huang, J. M. Ma, T. S. Mo, K. C. Lo, K. Y. Lo, and C. R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
    [CrossRef] [PubMed]
  16. Y. D. Chen, A. Y. G. Fuh, C. K. Liu, and K. T. Cheng, “Radial liquid crystal alignment based on circular rubbing the substrate coated with poly(N-vinyl carbazole) film,” J. Phys. D Appl. Phys. 44(21), 215304 (2011).
    [CrossRef]
  17. Y. D. Chen, K. T. Cheng, C. K. Liu, and A. Y. G. Fuh, “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films,” Opt. Express 19(8), 7553–7558 (2011).
    [CrossRef] [PubMed]
  18. C. Amra, “From light scattering to the microstructure of thin-film multilayers,” Appl. Opt. 32(28), 5481–5491 (1993).
    [CrossRef] [PubMed]
  19. A. Duparré and S. Kassam, “Relation between light scattering and the microstructure of optical thin films,” Appl. Opt. 32(28), 5475–5480 (1993).
    [CrossRef] [PubMed]
  20. L. Dierking, L. L. Kosbar, A. A. Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys. 81(7), 3007–3014 (1997).
    [CrossRef]
  21. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
    [CrossRef]
  22. J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
    [CrossRef]
  23. J. M. Jin, K. Parbhakar, and L. H. Dao, “Thermally induced phase separation of a liquid crystal in a polymer under microgravity: comparison with simulations,” Langmuir 12(8), 2096–2099 (1996).
    [CrossRef]
  24. L. Song, W. K. Lee, and X. Wang, “AC electric field assisted photo-induced high efficiency orientational diffractive grating in nematic liquid crystals,” Opt. Express 14(6), 2197–2202 (2006).
    [CrossRef] [PubMed]
  25. X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal,” J. Phys. D Appl. Phys. 40(11), 3348–3351 (2007).
    [CrossRef]

2011 (3)

K. J. Yang and D. Y. Yoon, “Electro-optical characteristics of dye-doped polymer dispersed liquid crystals,” J. Ind. Eng. Chem. 17(3), 543–548 (2011).
[CrossRef]

Y. D. Chen, A. Y. G. Fuh, C. K. Liu, and K. T. Cheng, “Radial liquid crystal alignment based on circular rubbing the substrate coated with poly(N-vinyl carbazole) film,” J. Phys. D Appl. Phys. 44(21), 215304 (2011).
[CrossRef]

Y. D. Chen, K. T. Cheng, C. K. Liu, and A. Y. G. Fuh, “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films,” Opt. Express 19(8), 7553–7558 (2011).
[CrossRef] [PubMed]

2009 (6)

S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

C. Y. Huang, J. M. Ma, T. S. Mo, K. C. Lo, K. Y. Lo, and C. R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[CrossRef] [PubMed]

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2(11), 112401 (2009).
[CrossRef]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express 17(14), 11926–11934 (2009).
[CrossRef] [PubMed]

A. Y. G. Fuh, C. C. Chen, C. K. Liu, and K. T. Cheng, “Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals,” Opt. Express 17(9), 7088–7094 (2009).
[CrossRef] [PubMed]

G. Z. Liu, D. L. Xia, W. J. Yang, and Z. Q. Huang, “The surface rubbing effect on morphologies of LC droplets and electro-optic properties of flexible PDLC films,” Sci. China, Ser. Biol. Chem. 52, 2329–2335 (2009).

2007 (2)

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
[CrossRef] [PubMed]

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal,” J. Phys. D Appl. Phys. 40(11), 3348–3351 (2007).
[CrossRef]

2006 (1)

2004 (2)

Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[CrossRef]

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[CrossRef]

2002 (1)

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[CrossRef]

2001 (1)

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

1998 (1)

A. Golemme, B. Kippelen, and N. Peyghambarian, “Highly efficient photorefractive polymer-dispersed liquid crystals,” Appl. Phys. Lett. 73(17), 2408–2410 (1998).
[CrossRef]

1997 (1)

L. Dierking, L. L. Kosbar, A. A. Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys. 81(7), 3007–3014 (1997).
[CrossRef]

1996 (1)

J. M. Jin, K. Parbhakar, and L. H. Dao, “Thermally induced phase separation of a liquid crystal in a polymer under microgravity: comparison with simulations,” Langmuir 12(8), 2096–2099 (1996).
[CrossRef]

1993 (2)

1992 (1)

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
[CrossRef]

1989 (1)

A. Y. G. Fuh and O. Caporaletti, “Polymer dispersed nematic liquid crystal films: The density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66(11), 5278–5284 (1989).
[CrossRef]

1986 (1)

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

Amra, C.

Ardakani, A. A.

L. Dierking, L. L. Kosbar, A. A. Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys. 81(7), 3007–3014 (1997).
[CrossRef]

Bao, R.

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2(11), 112401 (2009).
[CrossRef]

Caporaletti, O.

A. Y. G. Fuh and O. Caporaletti, “Polymer dispersed nematic liquid crystal films: The density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66(11), 5278–5284 (1989).
[CrossRef]

Chen, C. C.

Chen, Y. D.

Y. D. Chen, A. Y. G. Fuh, C. K. Liu, and K. T. Cheng, “Radial liquid crystal alignment based on circular rubbing the substrate coated with poly(N-vinyl carbazole) film,” J. Phys. D Appl. Phys. 44(21), 215304 (2011).
[CrossRef]

Y. D. Chen, K. T. Cheng, C. K. Liu, and A. Y. G. Fuh, “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films,” Opt. Express 19(8), 7553–7558 (2011).
[CrossRef] [PubMed]

Cheng, K. T.

Chien, L. C.

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
[CrossRef]

Dao, L. H.

J. M. Jin, K. Parbhakar, and L. H. Dao, “Thermally induced phase separation of a liquid crystal in a polymer under microgravity: comparison with simulations,” Langmuir 12(8), 2096–2099 (1996).
[CrossRef]

Dierking, L.

L. Dierking, L. L. Kosbar, A. A. Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys. 81(7), 3007–3014 (1997).
[CrossRef]

Doane, J. W.

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
[CrossRef]

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

Duparré, A.

Fuh, A. Y. G.

Y. D. Chen, A. Y. G. Fuh, C. K. Liu, and K. T. Cheng, “Radial liquid crystal alignment based on circular rubbing the substrate coated with poly(N-vinyl carbazole) film,” J. Phys. D Appl. Phys. 44(21), 215304 (2011).
[CrossRef]

Y. D. Chen, K. T. Cheng, C. K. Liu, and A. Y. G. Fuh, “Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly(N-vinyl carbazole) films,” Opt. Express 19(8), 7553–7558 (2011).
[CrossRef] [PubMed]

A. Y. G. Fuh, C. C. Chen, C. K. Liu, and K. T. Cheng, “Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals,” Opt. Express 17(9), 7088–7094 (2009).
[CrossRef] [PubMed]

S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15(21), 14078–14085 (2007).
[CrossRef] [PubMed]

A. Y. G. Fuh and O. Caporaletti, “Polymer dispersed nematic liquid crystal films: The density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66(11), 5278–5284 (1989).
[CrossRef]

Gauza, S.

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[CrossRef]

Golemme, A.

A. Golemme, B. Kippelen, and N. Peyghambarian, “Highly efficient photorefractive polymer-dispersed liquid crystals,” Appl. Phys. Lett. 73(17), 2408–2410 (1998).
[CrossRef]

Held, G. A.

L. Dierking, L. L. Kosbar, A. A. Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys. 81(7), 3007–3014 (1997).
[CrossRef]

Hou, C.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal,” J. Phys. D Appl. Phys. 40(11), 3348–3351 (2007).
[CrossRef]

Huang, C. Y.

Huang, S. Y.

S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Huang, Z. Q.

G. Z. Liu, D. L. Xia, W. J. Yang, and Z. Q. Huang, “The surface rubbing effect on morphologies of LC droplets and electro-optic properties of flexible PDLC films,” Sci. China, Ser. Biol. Chem. 52, 2329–2335 (2009).

Jin, J. M.

J. M. Jin, K. Parbhakar, and L. H. Dao, “Thermally induced phase separation of a liquid crystal in a polymer under microgravity: comparison with simulations,” Langmuir 12(8), 2096–2099 (1996).
[CrossRef]

Kassam, S.

Kim, I. I.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Kimball, B. R.

Kippelen, B.

A. Golemme, B. Kippelen, and N. Peyghambarian, “Highly efficient photorefractive polymer-dispersed liquid crystals,” Appl. Phys. Lett. 73(17), 2408–2410 (1998).
[CrossRef]

Korevaar, E.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Kosbar, L. L.

L. Dierking, L. L. Kosbar, A. A. Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys. 81(7), 3007–3014 (1997).
[CrossRef]

Lee, C. R.

S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

C. Y. Huang, J. M. Ma, T. S. Mo, K. C. Lo, K. Y. Lo, and C. R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[CrossRef] [PubMed]

Lee, W. K.

Li, J.

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[CrossRef]

Lin, Y. H.

Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[CrossRef]

Liu, C. K.

Liu, C. M.

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2(11), 112401 (2009).
[CrossRef]

Liu, G. Z.

G. Z. Liu, D. L. Xia, W. J. Yang, and Z. Q. Huang, “The surface rubbing effect on morphologies of LC droplets and electro-optic properties of flexible PDLC films,” Sci. China, Ser. Biol. Chem. 52, 2329–2335 (2009).

Lo, K. C.

Lo, K. Y.

Lowe, A. C.

L. Dierking, L. L. Kosbar, A. A. Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys. 81(7), 3007–3014 (1997).
[CrossRef]

Ma, C. M.

S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Ma, J. M.

McArthur, B.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Mo, T. S.

S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

C. Y. Huang, J. M. Ma, T. S. Mo, K. C. Lo, K. Y. Lo, and C. R. Lee, “All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer,” Opt. Express 17(25), 22386–22392 (2009).
[CrossRef] [PubMed]

Nersisyan, S.

Parbhakar, K.

J. M. Jin, K. Parbhakar, and L. H. Dao, “Thermally induced phase separation of a liquid crystal in a polymer under microgravity: comparison with simulations,” Langmuir 12(8), 2096–2099 (1996).
[CrossRef]

Pei, Y.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal,” J. Phys. D Appl. Phys. 40(11), 3348–3351 (2007).
[CrossRef]

Peyghambarian, N.

A. Golemme, B. Kippelen, and N. Peyghambarian, “Highly efficient photorefractive polymer-dispersed liquid crystals,” Appl. Phys. Lett. 73(17), 2408–2410 (1998).
[CrossRef]

Ren, H.

Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[CrossRef]

Song, L.

Steeves, D. M.

Sun, X.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal,” J. Phys. D Appl. Phys. 40(11), 3348–3351 (2007).
[CrossRef]

Tabiryan, N.

Ting, C. L.

Vaz, N. A.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

Wang, X.

Wu, B. G.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

Wu, S. T.

Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[CrossRef]

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[CrossRef]

Wung, T. C.

S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Xia, D. L.

G. Z. Liu, D. L. Xia, W. J. Yang, and Z. Q. Huang, “The surface rubbing effect on morphologies of LC droplets and electro-optic properties of flexible PDLC films,” Sci. China, Ser. Biol. Chem. 52, 2329–2335 (2009).

Yang, D. K.

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2(11), 112401 (2009).
[CrossRef]

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
[CrossRef]

Yang, K. J.

K. J. Yang and D. Y. Yoon, “Electro-optical characteristics of dye-doped polymer dispersed liquid crystals,” J. Ind. Eng. Chem. 17(3), 543–548 (2011).
[CrossRef]

Yang, W. J.

G. Z. Liu, D. L. Xia, W. J. Yang, and Z. Q. Huang, “The surface rubbing effect on morphologies of LC droplets and electro-optic properties of flexible PDLC films,” Sci. China, Ser. Biol. Chem. 52, 2329–2335 (2009).

Yao, F.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal,” J. Phys. D Appl. Phys. 40(11), 3348–3351 (2007).
[CrossRef]

Yeh, H. C.

S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Yoon, D. Y.

K. J. Yang and D. Y. Yoon, “Electro-optical characteristics of dye-doped polymer dispersed liquid crystals,” J. Ind. Eng. Chem. 17(3), 543–548 (2011).
[CrossRef]

Zhang, J.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal,” J. Phys. D Appl. Phys. 40(11), 3348–3351 (2007).
[CrossRef]

Zumer, S.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

S. Y. Huang, T. C. Wung, A. Y. G. Fuh, H. C. Yeh, C. M. Ma, T. S. Mo, and C. R. Lee, “Electro- and photo-controllable spatial filter based on a liquid crystal film with a photoconductive layer,” Appl. Phys. B 97(4), 749–752 (2009).
[CrossRef]

Appl. Phys. Express (1)

R. Bao, C. M. Liu, and D. K. Yang, “Smart bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express 2(11), 112401 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[CrossRef]

Y. H. Lin, H. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[CrossRef]

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
[CrossRef]

A. Golemme, B. Kippelen, and N. Peyghambarian, “Highly efficient photorefractive polymer-dispersed liquid crystals,” Appl. Phys. Lett. 73(17), 2408–2410 (1998).
[CrossRef]

J. Appl. Phys. (4)

J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96(1), 19–24 (2004).
[CrossRef]

L. Dierking, L. L. Kosbar, A. A. Ardakani, A. C. Lowe, and G. A. Held, “Two-stage switching behavior of polymer stabilized cholesteric textures,” J. Appl. Phys. 81(7), 3007–3014 (1997).
[CrossRef]

A. Y. G. Fuh and O. Caporaletti, “Polymer dispersed nematic liquid crystal films: The density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66(11), 5278–5284 (1989).
[CrossRef]

H. Ren and S. T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” J. Appl. Phys. 92(2), 797–800 (2002).
[CrossRef]

J. Ind. Eng. Chem. (1)

K. J. Yang and D. Y. Yoon, “Electro-optical characteristics of dye-doped polymer dispersed liquid crystals,” J. Ind. Eng. Chem. 17(3), 543–548 (2011).
[CrossRef]

J. Phys. D Appl. Phys. (2)

Y. D. Chen, A. Y. G. Fuh, C. K. Liu, and K. T. Cheng, “Radial liquid crystal alignment based on circular rubbing the substrate coated with poly(N-vinyl carbazole) film,” J. Phys. D Appl. Phys. 44(21), 215304 (2011).
[CrossRef]

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal,” J. Phys. D Appl. Phys. 40(11), 3348–3351 (2007).
[CrossRef]

Langmuir (1)

J. M. Jin, K. Parbhakar, and L. H. Dao, “Thermally induced phase separation of a liquid crystal in a polymer under microgravity: comparison with simulations,” Langmuir 12(8), 2096–2099 (1996).
[CrossRef]

Opt. Express (6)

Proc. SPIE (1)

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Sci. China, Ser. Biol. Chem. (1)

G. Z. Liu, D. L. Xia, W. J. Yang, and Z. Q. Huang, “The surface rubbing effect on morphologies of LC droplets and electro-optic properties of flexible PDLC films,” Sci. China, Ser. Biol. Chem. 52, 2329–2335 (2009).

Other (1)

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Chemical structures of compounds used in this paper. (a) nematic LCs (K15), and (b) photoconductive polymer (PVK).

Fig. 2
Fig. 2

Variations in stable transmission in relation to the temperature during heating (black dots) and cooling (red squares) of the LC sample fabricated from two non-rubbed PVK-coated glass substrates. The LC sample at 25 °C; (a) before (transparent) and, (b) after (scattering) thermal treatment via the particular TIPS.

Fig. 3
Fig. 3

Transmittance as a function of the polarization state of the incident light. LC sample after thermal treatment via the particular TIPS at ~25 °C observed under (a) parallel- and (b) crossed-POM. P and A are the transmission axes of the polarizer and analyzer of the POM, respectively.

Fig. 4
Fig. 4

SEM images of LC samples after thermal treatment with setting temperatures of (a) 40, (b) 60, and (c) 80 °C at a heating rate of 30 °C/min. The temperature of the LC sample was maintained at the setting temperature for 8 min, and then cooled to 25 °C at a cooling rate of 30 °C/min.

Fig. 5
Fig. 5

SEM images of LC samples after being heated to 60 °C at a heating rate of 30 °C/min. The temperature of the LC sample was maintained at 60 °C for 8 min, and then cooled to 25 °C at the cooling rates of (a) 30, (b) 10, (c) 5, and (d) 1 °C/min.

Fig. 6
Fig. 6

Cross-section SEM image of the thermally treated LC sample

Fig. 7
Fig. 7

Measured transmission of the fabricated scattering mode LC light shutter as a function of an applied AC (1 KHz) voltage. Insets show photographs of the LC light shutter at 25 °C with the applied AC voltages of (a) 0 and (b) 18 V.

Fig. 8
Fig. 8

Dynamic response (red line, plotted on the primary axis) of fabricated scattering mode LC light shutter when an AC voltage pulse (blue line, plotted on the secondary axis) of 20 V (1 KHz) is applied.

Metrics