Abstract

A new heterogeneous Si/III-V integration and the optical vertical interconnect access to the silicon-on-insulator (SOI) nanophotonic layer is proposed and designed. The III-V semiconductor layers are directly bonded to the SOI layer and etched to form the Si/III-V waveguide (after removal of the substrate), which has no air-trench or SOI channel waveguide underneath as the prior art. The design example shows a 1.5 μm wide Si/III-V waveguide has a confinement factor of ~24% in a 100 nm-thick active region for effective light amplification/absorption. The optical vertical interconnect access is realized through tapering both the III-V semiconductor waveguide and SOI layer in the same direction. Optimization using a simple approximated two-dimensional modal presented gives ~100% coupling efficiency with a 25 μm long optical vertical interconnect access. A three-dimensional finite-difference-time-domain electromagnetic simulation verifies the design numerically and also shows the proposed structure has a good alignment tolerance for fabrication.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [CrossRef]
  2. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  3. G. Roelkens, D. Van Thourhout, and R. Baets, “Coupling schemes for heterogeneous integration of III-V memberane devices and silicon-on-insulator waveguides,” J. Lightwave Technol. 23(11), 3827–3831 (2005).
    [CrossRef]
  4. A. Yariv and X. Sun, “Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis,” Opt. Express 15(15), 9147–9151 (2007).
    [CrossRef] [PubMed]
  5. H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310 nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007).
    [CrossRef]
  6. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent racektrack laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
    [CrossRef]
  7. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-siliocn evenscent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef]
  8. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP Lasers,” Opt. Lett. 34(9), 1345–1347 (2009).
    [CrossRef] [PubMed]
  9. Y. Wang, Y. Wei, Y. Huang, Y. Tu, D. Ng, C. Lee, Y. Zheng, B. Liu, and S. T. Ho, “Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits,” Opt. Express 19(3), 2006–2013 (2011).
    [CrossRef] [PubMed]
  10. X. Sun and A. Yariv, “Engineering supermode silicon/III-V hybrid waveguides for laser oscillation,” J. Opt. Soc. Am. B 25(6), 923–926 (2008).
    [CrossRef]
  11. B. Ben Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli, “Electrically driven hybrid Si/III-V Fabry-Perot lasers based on adiabatic mode transformers,” Opt. Express 19(11), 10317–10325 (2011).
    [CrossRef] [PubMed]
  12. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotnic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
    [CrossRef]
  13. G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006).
    [CrossRef] [PubMed]
  14. JJ. Brouckaert, G. Roelkens, D. Van Thourhout, and R. Baets, “Thin-film III-V photodetectors integrated on silicon-on-insulator photonic ICs,” J. Lightwave Technol. 25(4), 1053–1060 (2007).
    [CrossRef]
  15. G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13(25), 10102–10108 (2005).
    [CrossRef] [PubMed]
  16. S. Keyvaninia, G. Roelkens, M. Lamponi, G.-H. Duan, J.-M. Fedeli, and D. V. Thourhout, “Towards a heterogeneous III-V/SOI single wavelength tunable laser,” 14th Annual Symposium of IEEE Photonics Society Benelux Chapter, 2010.

2011 (2)

2009 (1)

2008 (1)

2007 (5)

2006 (2)

2005 (3)

2004 (1)

Atwater, H. A.

Augendre, E.

Baets, R.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotnic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
[CrossRef]

JJ. Brouckaert, G. Roelkens, D. Van Thourhout, and R. Baets, “Thin-film III-V photodetectors integrated on silicon-on-insulator photonic ICs,” J. Lightwave Technol. 25(4), 1053–1060 (2007).
[CrossRef]

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006).
[CrossRef] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “Coupling schemes for heterogeneous integration of III-V memberane devices and silicon-on-insulator waveguides,” J. Lightwave Technol. 23(11), 3827–3831 (2005).
[CrossRef]

G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13(25), 10102–10108 (2005).
[CrossRef] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

Beckx, S.

Ben Bakir, B.

Bienstman, P.

Bogaerts, W.

Bordel, D.

Bowers, J. E.

Brouckaert, J.

Brouckaert, JJ.

Chang, H.

Cohen, O.

Descos, A.

Di Cioccio, L.

Diest, K. A.

Dumon, P.

Fang, A. W.

Fang, W.

Fedeli, J. M.

Fedeli, J.-M.

Fulbert, L.

Ghaffari, A.

Grosse, P.

Ho, S. T.

Huang, Y.

Jones, R.

Lagahe, C.

Lee, C.

Liu, B.

Luyssaert, B.

McNab, S. J.

Ng, D.

Nötzel, R.

Olivier, N.

Paniccia, M. J.

Park, H.

Raday, O.

Regreny, P.

Roelkens, G.

Rojo Romeo, P.

Scherer, A.

Seassal, C.

Shearn, M. J.

Smit, M.

Sun, X.

Sysak, M. N.

Taillaert, D.

Tu, Y.

Van Campenhout, J.

Van Thourhout, D.

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotnic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
[CrossRef]

JJ. Brouckaert, G. Roelkens, D. Van Thourhout, and R. Baets, “Thin-film III-V photodetectors integrated on silicon-on-insulator photonic ICs,” J. Lightwave Technol. 25(4), 1053–1060 (2007).
[CrossRef]

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006).
[CrossRef] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “Coupling schemes for heterogeneous integration of III-V memberane devices and silicon-on-insulator waveguides,” J. Lightwave Technol. 23(11), 3827–3831 (2005).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13(25), 10102–10108 (2005).
[CrossRef] [PubMed]

Verstuyft, S.

Vlasov, Y. A.

Wang, Y.

Wei, Y.

Wiaux, V.

Yariv, A.

Zadok, A.

Zheng, Y.

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (10)

Y. Wang, Y. Wei, Y. Huang, Y. Tu, D. Ng, C. Lee, Y. Zheng, B. Liu, and S. T. Ho, “Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits,” Opt. Express 19(3), 2006–2013 (2011).
[CrossRef] [PubMed]

B. Ben Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli, “Electrically driven hybrid Si/III-V Fabry-Perot lasers based on adiabatic mode transformers,” Opt. Express 19(11), 10317–10325 (2011).
[CrossRef] [PubMed]

J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotnic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007).
[CrossRef]

A. Yariv and X. Sun, “Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis,” Opt. Express 15(15), 9147–9151 (2007).
[CrossRef] [PubMed]

H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310 nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007).
[CrossRef]

G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit,” Opt. Express 14(18), 8154–8159 (2006).
[CrossRef] [PubMed]

W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-siliocn evenscent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent racektrack laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef]

G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13(25), 10102–10108 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef]

Opt. Lett. (1)

Other (1)

S. Keyvaninia, G. Roelkens, M. Lamponi, G.-H. Duan, J.-M. Fedeli, and D. V. Thourhout, “Towards a heterogeneous III-V/SOI single wavelength tunable laser,” 14th Annual Symposium of IEEE Photonics Society Benelux Chapter, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic view of the heterogeneous photonic integration and optical vertical interconnect access; (a) cross-section of the waveguide; (b) side-view of structure and light coupling between the silicon layer and heterogeneous waveguide structure; (c) taper structure of the SOI layer; (d) tapering structure of the III-V on silicon.

Fig. 2
Fig. 2

(a) Contour plot of confinement factor in the active region under different thickness of two SCH layers; (b) Refractive index profile of the optimized multilayered waveguide for a maximal light confinement in the active region and the corresponding mode profile.

Fig. 3
Fig. 3

(a) Confinement factor Γa in the 100 nm thick active region; (b-e) Eigenmode profiles of the Si/III-V waveguide calculated by finite-difference full-vectorial eigenmode solution; when (b) w = 0.5 μm; (c) w = 0.7 μm; (d) w = 0.9μm and (e) w = 1.5 μm.

Fig. 4
Fig. 4

(a) The tapering structure of the three-dimensional waveguide is approximated by a two dimensional modal slab waveguide in the y-z plane after applying the effective index method in the x-direction. The tapering structure is represented by a gradual refractive index in the two-dimensional model in the y-z plane as shown in the bottom; (b) Tapering shape considered in the optimization.

Fig. 5
Fig. 5

(a) Contour plot of coupling efficiency under different tapering parameter (α) when the tapering length L = 25 μm; (b) optimized tapering structure; (c) light propagation simulation of the optimized structure.

Fig. 6
Fig. 6

Coupling coefficient along the propagation distance for different tapering lengths, which shows an adiabatic coupling and a coupling efficiency ~97% even when the tapering length is only 15 µm.

Fig. 7
Fig. 7

(a) Transmission of the designed structure under different alignment offset (based on 3D FDTD simulation); (b-e) Field profile at the Si/III-V waveguide cross-section simulated by FDTD when Δs = 0 µm (b); Δs = 0.1 µm (c); Δs = 0.25 µm (d); Δs = 0.5 µm (e).

Metrics