Abstract

The Rayleigh-Sommerfeld back-propagation method is a fast and highly flexible volume reconstruction scheme for digital holographic microscopy. We present a new method for 3D localization of weakly scattering objects using this technique. A well-known aspect of classical optics (the Gouy phase shift) can be used to discriminate between objects lying on either side of the holographic image plane. This results in an unambiguous, model-free measurement of the axial coordinate of microscopic samples, and is demonstrated both on an individual colloidal sphere, and on a more complex object — a layer of such particles in close contact.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
    [CrossRef] [PubMed]
  2. J. Fung, K. E. Martin, R. W. Perry, D. M. Katz, R. McGorty, and V. N. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Opt. Express 19, 8051–8065 (2011).
    [CrossRef] [PubMed]
  3. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973–4978 (1992).
    [CrossRef] [PubMed]
  4. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
    [CrossRef] [PubMed]
  5. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. B. amnd, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
    [CrossRef] [PubMed]
  6. Z. Frentz, S. Kuehn, D. Hekstra, and S. Leiber, “Microbial population dynamics by digital in-line holographic microscopy,” Rev. Sci. Inst. 81, 084301 (2010).
    [CrossRef]
  7. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
    [CrossRef]
  8. R. Besseling, E. Weeks, A. Schofield, and W. Poon, “Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007).
    [CrossRef] [PubMed]
  9. J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
    [CrossRef] [PubMed]
  10. A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
    [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics3rd Ed., (Roberts & Company, 2005).
  12. S.-H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007).
    [CrossRef] [PubMed]
  13. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
    [CrossRef] [PubMed]
  14. C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15, 686–693 (2004).
    [CrossRef]
  15. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef] [PubMed]
  16. M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
    [CrossRef]
  17. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech. 42, 531–555 (2010).
    [CrossRef]
  18. D. Gabor, “A new microscopic principle,” Nature 161, 18275–18282 (1948).
    [CrossRef]
  19. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons., 1983).
  20. B. Berne and R. Pecora, Dynamic Light Scattering (John Wiley & Sons, Inc., 1976).
  21. U. Agero, C. Monken, C. Ropert, R. Gazzinelli, and O. Mesquita, “Cell surface fluctuations studied with defocusing microscopy,” Phys. Rev. E 67, 051904 (2003).
    [CrossRef]
  22. L. Mesquita, U. Agero, and O. Mesquita, “Defocusing microscopy: An approach for red blood cell optics,” Appl. Phys. Lett. 88, 133901 (2006).
    [CrossRef]
  23. L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010).
    [CrossRef] [PubMed]
  24. M. Born and E. Wolf, Principles of Optics6th Ed., (Cambridge University Press, 1998).
  25. G. Farnell, “Measured phase distribution in the image space of a microwave lens,” Can. J. Phys. 36, 935–943 (1958).
    [CrossRef]
  26. A. Pralle, M. Prummer, E.-L. Florin, E. Stelzer, and J. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–86 (1999).
    [CrossRef] [PubMed]
  27. A. Rohrbach and E. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91, 5474 (2002).
    [CrossRef]
  28. L. Wilson, A. Harrison, A. Schofield, J. Arlt, and W. Poon, “Passive and active microrheology of hard-sphere colloids,” J. Phys. Chem. B 113, 3806–3812 (2009).
    [CrossRef] [PubMed]
  29. F. Cheong, B. Krishnatreya, and D. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
    [CrossRef] [PubMed]
  30. E. L. Hall, Computer Image Processing and Recognition (Academic Press, 1979).
  31. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004).
    [CrossRef] [PubMed]
  32. B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
    [CrossRef]
  33. B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R–1–71840R–12 (2009).
  34. M. Elliot and W. Poon, “Conventional optical microscopy of colloidal suspensions,” Adv. Coll. Interf. Sci. 92, 133–194 (2001).
    [CrossRef]

2011 (2)

J. Fung, K. E. Martin, R. W. Perry, D. M. Katz, R. McGorty, and V. N. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Opt. Express 19, 8051–8065 (2011).
[CrossRef] [PubMed]

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

2010 (5)

M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[CrossRef]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

Z. Frentz, S. Kuehn, D. Hekstra, and S. Leiber, “Microbial population dynamics by digital in-line holographic microscopy,” Rev. Sci. Inst. 81, 084301 (2010).
[CrossRef]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010).
[CrossRef] [PubMed]

F. Cheong, B. Krishnatreya, and D. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
[CrossRef] [PubMed]

2009 (2)

L. Wilson, A. Harrison, A. Schofield, J. Arlt, and W. Poon, “Passive and active microrheology of hard-sphere colloids,” J. Phys. Chem. B 113, 3806–3812 (2009).
[CrossRef] [PubMed]

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R–1–71840R–12 (2009).

2008 (1)

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[CrossRef]

2007 (4)

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. B. amnd, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef] [PubMed]

R. Besseling, E. Weeks, A. Schofield, and W. Poon, “Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007).
[CrossRef] [PubMed]

S. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
[CrossRef] [PubMed]

S.-H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007).
[CrossRef] [PubMed]

2006 (2)

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef] [PubMed]

L. Mesquita, U. Agero, and O. Mesquita, “Defocusing microscopy: An approach for red blood cell optics,” Appl. Phys. Lett. 88, 133901 (2006).
[CrossRef]

2004 (2)

L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004).
[CrossRef] [PubMed]

C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15, 686–693 (2004).
[CrossRef]

2003 (2)

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
[CrossRef] [PubMed]

U. Agero, C. Monken, C. Ropert, R. Gazzinelli, and O. Mesquita, “Cell surface fluctuations studied with defocusing microscopy,” Phys. Rev. E 67, 051904 (2003).
[CrossRef]

2002 (1)

A. Rohrbach and E. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91, 5474 (2002).
[CrossRef]

2001 (2)

M. Elliot and W. Poon, “Conventional optical microscopy of colloidal suspensions,” Adv. Coll. Interf. Sci. 92, 133–194 (2001).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

1999 (1)

A. Pralle, M. Prummer, E.-L. Florin, E. Stelzer, and J. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–86 (1999).
[CrossRef] [PubMed]

1996 (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

1995 (1)

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[CrossRef]

1992 (1)

1958 (1)

G. Farnell, “Measured phase distribution in the image space of a microwave lens,” Can. J. Phys. 36, 935–943 (1958).
[CrossRef]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 18275–18282 (1948).
[CrossRef]

Adolf, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. B. amnd, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef] [PubMed]

Agero, U.

L. Mesquita, U. Agero, and O. Mesquita, “Defocusing microscopy: An approach for red blood cell optics,” Appl. Phys. Lett. 88, 133901 (2006).
[CrossRef]

U. Agero, C. Monken, C. Ropert, R. Gazzinelli, and O. Mesquita, “Cell surface fluctuations studied with defocusing microscopy,” Phys. Rev. E 67, 051904 (2003).
[CrossRef]

amnd, R. B.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. B. amnd, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef] [PubMed]

Arlt, J.

L. Wilson, A. Harrison, A. Schofield, J. Arlt, and W. Poon, “Passive and active microrheology of hard-sphere colloids,” J. Phys. Chem. B 113, 3806–3812 (2009).
[CrossRef] [PubMed]

Barbastathis, G.

Berne, B.

B. Berne and R. Pecora, Dynamic Light Scattering (John Wiley & Sons, Inc., 1976).

Besseling, R.

R. Besseling, E. Weeks, A. Schofield, and W. Poon, “Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007).
[CrossRef] [PubMed]

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons., 1983).

Born, M.

M. Born and E. Wolf, Principles of Optics6th Ed., (Cambridge University Press, 1998).

Boyer, K.

Cheong, F.

Conrad, J.

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

Cullen, D.

Ducottet, C.

C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15, 686–693 (2004).
[CrossRef]

Elliot, M.

M. Elliot and W. Poon, “Conventional optical microscopy of colloidal suspensions,” Adv. Coll. Interf. Sci. 92, 133–194 (2001).
[CrossRef]

Farnell, G.

G. Farnell, “Measured phase distribution in the image space of a microwave lens,” Can. J. Phys. 36, 935–943 (1958).
[CrossRef]

Florin, E.-L.

A. Pralle, M. Prummer, E.-L. Florin, E. Stelzer, and J. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–86 (1999).
[CrossRef] [PubMed]

Fournel, T.

C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15, 686–693 (2004).
[CrossRef]

Fournier, C.

C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15, 686–693 (2004).
[CrossRef]

Frentz, Z.

Z. Frentz, S. Kuehn, D. Hekstra, and S. Leiber, “Microbial population dynamics by digital in-line holographic microscopy,” Rev. Sci. Inst. 81, 084301 (2010).
[CrossRef]

Fung, J.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 18275–18282 (1948).
[CrossRef]

Gazzinelli, R.

U. Agero, C. Monken, C. Ropert, R. Gazzinelli, and O. Mesquita, “Cell surface fluctuations studied with defocusing microscopy,” Phys. Rev. E 67, 051904 (2003).
[CrossRef]

Gibiansky, M.

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics3rd Ed., (Roberts & Company, 2005).

Gordon, V.

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

Grier, D.

Grier, D. G.

Haddad, W. S.

Hall, E. L.

E. L. Hall, Computer Image Processing and Recognition (Academic Press, 1979).

Harrison, A.

L. Wilson, A. Harrison, A. Schofield, J. Arlt, and W. Poon, “Passive and active microrheology of hard-sphere colloids,” J. Phys. Chem. B 113, 3806–3812 (2009).
[CrossRef] [PubMed]

Hekstra, D.

Z. Frentz, S. Kuehn, D. Hekstra, and S. Leiber, “Microbial population dynamics by digital in-line holographic microscopy,” Rev. Sci. Inst. 81, 084301 (2010).
[CrossRef]

Hörber, J.

A. Pralle, M. Prummer, E.-L. Florin, E. Stelzer, and J. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–86 (1999).
[CrossRef] [PubMed]

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons., 1983).

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

Jin, F.

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

Katz, D. M.

Katz, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. B. amnd, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef] [PubMed]

Kemper, B.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R–1–71840R–12 (2009).

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[CrossRef]

Kim, M.

M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[CrossRef]

Kim, S.-H.

Kosmeier, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R–1–71840R–12 (2009).

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

Krishnatreya, B.

Kuehn, S.

Z. Frentz, S. Kuehn, D. Hekstra, and S. Leiber, “Microbial population dynamics by digital in-line holographic microscopy,” Rev. Sci. Inst. 81, 084301 (2010).
[CrossRef]

Langehanenberg, P.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R–1–71840R–12 (2009).

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[CrossRef]

Lee, S.

Lee, S.-H.

Leiber, S.

Z. Frentz, S. Kuehn, D. Hekstra, and S. Leiber, “Microbial population dynamics by digital in-line holographic microscopy,” Rev. Sci. Inst. 81, 084301 (2010).
[CrossRef]

Longworth, J. W.

Malkiel, E.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. B. amnd, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef] [PubMed]

Manoharan, V. N.

Martin, K. E.

Mathewson, M.

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

McGorty, R.

McPherson, A.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

Meng, H.

Mesquita, L.

L. Mesquita, U. Agero, and O. Mesquita, “Defocusing microscopy: An approach for red blood cell optics,” Appl. Phys. Lett. 88, 133901 (2006).
[CrossRef]

Mesquita, O.

L. Mesquita, U. Agero, and O. Mesquita, “Defocusing microscopy: An approach for red blood cell optics,” Appl. Phys. Lett. 88, 133901 (2006).
[CrossRef]

U. Agero, C. Monken, C. Ropert, R. Gazzinelli, and O. Mesquita, “Cell surface fluctuations studied with defocusing microscopy,” Phys. Rev. E 67, 051904 (2003).
[CrossRef]

Monken, C.

U. Agero, C. Monken, C. Ropert, R. Gazzinelli, and O. Mesquita, “Cell surface fluctuations studied with defocusing microscopy,” Phys. Rev. E 67, 051904 (2003).
[CrossRef]

Motto, D.

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

Pan, G.

Pecora, R.

B. Berne and R. Pecora, Dynamic Light Scattering (John Wiley & Sons, Inc., 1976).

Perry, R. W.

Piano, E.

Place, A. R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. B. amnd, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef] [PubMed]

Pontiggia, C.

Poon, W.

L. Wilson, A. Harrison, A. Schofield, J. Arlt, and W. Poon, “Passive and active microrheology of hard-sphere colloids,” J. Phys. Chem. B 113, 3806–3812 (2009).
[CrossRef] [PubMed]

R. Besseling, E. Weeks, A. Schofield, and W. Poon, “Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007).
[CrossRef] [PubMed]

M. Elliot and W. Poon, “Conventional optical microscopy of colloidal suspensions,” Adv. Coll. Interf. Sci. 92, 133–194 (2001).
[CrossRef]

Pralle, A.

A. Pralle, M. Prummer, E.-L. Florin, E. Stelzer, and J. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–86 (1999).
[CrossRef] [PubMed]

Prummer, M.

A. Pralle, M. Prummer, E.-L. Florin, E. Stelzer, and J. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–86 (1999).
[CrossRef] [PubMed]

Przibilla, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R–1–71840R–12 (2009).

Remmersmann, C.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R–1–71840R–12 (2009).

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[CrossRef]

Repetto, L.

Rhodes, C. K.

Rohrbach, A.

A. Rohrbach and E. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91, 5474 (2002).
[CrossRef]

Roichman, Y.

Ropert, C.

U. Agero, C. Monken, C. Ropert, R. Gazzinelli, and O. Mesquita, “Cell surface fluctuations studied with defocusing microscopy,” Phys. Rev. E 67, 051904 (2003).
[CrossRef]

Schofield, A.

L. Wilson, A. Harrison, A. Schofield, J. Arlt, and W. Poon, “Passive and active microrheology of hard-sphere colloids,” J. Phys. Chem. B 113, 3806–3812 (2009).
[CrossRef] [PubMed]

R. Besseling, E. Weeks, A. Schofield, and W. Poon, “Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007).
[CrossRef] [PubMed]

Sheng, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. B. amnd, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef] [PubMed]

Shrout, J.

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

Solem, J. C.

Stelzer, E.

A. Rohrbach and E. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91, 5474 (2002).
[CrossRef]

A. Pralle, M. Prummer, E.-L. Florin, E. Stelzer, and J. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–86 (1999).
[CrossRef] [PubMed]

Stopka, W.

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

Stürwald, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R–1–71840R–12 (2009).

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[CrossRef]

Tian, L.

van Blaaderen, A.

van Oostrum, P.

von Bally, G.

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R–1–71840R–12 (2009).

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[CrossRef]

Waller, L.

Weeks, E.

R. Besseling, E. Weeks, A. Schofield, and W. Poon, “Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007).
[CrossRef] [PubMed]

Wilson, L.

L. Wilson, A. Harrison, A. Schofield, J. Arlt, and W. Poon, “Passive and active microrheology of hard-sphere colloids,” J. Phys. Chem. B 113, 3806–3812 (2009).
[CrossRef] [PubMed]

Wiltzius, P.

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics6th Ed., (Cambridge University Press, 1998).

Wong, G.

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

Yang, S.-M.

Yi, G.-R.

Zelasko, D.

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

Adv. Coll. Interf. Sci. (1)

M. Elliot and W. Poon, “Conventional optical microscopy of colloidal suspensions,” Adv. Coll. Interf. Sci. 92, 133–194 (2001).
[CrossRef]

Ann. Rev. Fluid Mech. (1)

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

L. Mesquita, U. Agero, and O. Mesquita, “Defocusing microscopy: An approach for red blood cell optics,” Appl. Phys. Lett. 88, 133901 (2006).
[CrossRef]

Biophys. J. (1)

J. Conrad, M. Gibiansky, F. Jin, V. Gordon, D. Motto, M. Mathewson, W. Stopka, D. Zelasko, J. Shrout, and G. Wong, “Flagella and pili-mediated near-surface single-cell motility mechanisms in p. aeruginosa,” Biophys. J. 100, 1608–1616 (2011).
[CrossRef] [PubMed]

Can. J. Phys. (1)

G. Farnell, “Measured phase distribution in the image space of a microwave lens,” Can. J. Phys. 36, 935–943 (1958).
[CrossRef]

J. Appl. Phys. (1)

A. Rohrbach and E. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91, 5474 (2002).
[CrossRef]

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

J. Phys. Chem. B (1)

L. Wilson, A. Harrison, A. Schofield, J. Arlt, and W. Poon, “Passive and active microrheology of hard-sphere colloids,” J. Phys. Chem. B 113, 3806–3812 (2009).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15, 686–693 (2004).
[CrossRef]

Microsc. Res. Tech. (1)

A. Pralle, M. Prummer, E.-L. Florin, E. Stelzer, and J. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–86 (1999).
[CrossRef] [PubMed]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 18275–18282 (1948).
[CrossRef]

Opt. Express (5)

Opt. Laser. Eng. (1)

B. Kemper, S. Stürwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (leds) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Opt. Laser. Eng. 46, 499–507 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

U. Agero, C. Monken, C. Ropert, R. Gazzinelli, and O. Mesquita, “Cell surface fluctuations studied with defocusing microscopy,” Phys. Rev. E 67, 051904 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

R. Besseling, E. Weeks, A. Schofield, and W. Poon, “Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. B. amnd, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512–17517 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

B. Kemper, S. Kosmeier, P. Langehanenberg, S. Przibilla, C. Remmersmann, S. Stürwald, and G. von Bally, “Application of 3d tracking, led illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy,” Proc. SPIE 7184, 71840R–1–71840R–12 (2009).

Rev. Sci. Inst. (1)

Z. Frentz, S. Kuehn, D. Hekstra, and S. Leiber, “Microbial population dynamics by digital in-line holographic microscopy,” Rev. Sci. Inst. 81, 084301 (2010).
[CrossRef]

Science (1)

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[CrossRef]

SPIE Rev. (1)

M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[CrossRef]

Other (5)

J. W. Goodman, Introduction to Fourier Optics3rd Ed., (Roberts & Company, 2005).

M. Born and E. Wolf, Principles of Optics6th Ed., (Cambridge University Press, 1998).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons., 1983).

B. Berne and R. Pecora, Dynamic Light Scattering (John Wiley & Sons, Inc., 1976).

E. L. Hall, Computer Image Processing and Recognition (Academic Press, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Optical layout; an LED is placed behind the condenser aperture, which is closed as far as possible to approximate a point source. (b) The scattering geometry. (c) Calculated RG hologram with pixel values rescaled to the range 0–255. The scale bar indicates 10μm.

Fig. 2
Fig. 2

Analysis of simulated data for a single weakly scattering sphere (see text for details) — Scale bars represent 2μm. (a) Intensity as a function of x and z in a plane through the center of the scatterer. Note the transition from bright to dark upon passing through the center of the particle in the vertical direction. (b) g(x′, z′) > 0 taken from the previous image. (c) Intensity profiles sampled through the center of the first panel, in the horizontal direction (black) and vertical direction (red). (d) Intensity profiles sampled through the center of the second panel (the gradient image g(x′, z′)). Note that the axial profiles in this panel and the previous one have been shifted by 40 μm to place the scatterer at the origin. Here and elsewhere, we use primed coordinates to indicate a position in the reconstructed volume.

Fig. 3
Fig. 3

Example data from a single particle. Scale bars represent 2μm in all cases. (a) Vertical slice through the center of an image stack created by physically translating the sample (see text). (b) Image of a particle located at z ≈ 9μm (‘downstream’ of the focal plane in the illumination path). (c) Optical field reconstructed from the previous panel. The hologram plane (z′ = 0) would be located below the bottom of the image. (d) Intensity gradient g(x′, z′) < 0. The dark central spot is azimuthally symmetric about the z′-axis and gives the particle location in all three dimensions. (e,f) The companion images to (b,c), for a particle located at z ≈ −9μm (‘upstream’ in the illumination path). (g) Intensity gradient g(x′, z′) > 0. The particle location is specified by a maximum of g(x′, z′) for those scatterers with z < 0. The intensity in Panels (c) and (f) have been rescaled for clarity, but the shape of the optical field is unchanged.

Fig. 4
Fig. 4

2D map comparing actual (z) and reconstructed (z′) defocus distances of a layer of closely-spaced particles. Around 2000 closely-spaced particles resting on the surface of a glass slide were imaged with varying amounts of defocus (see text). The focal plane was translated through the sample in order to image the particle layer with an axial position in the range z = 0 μm to z = −80 μm, in steps of Δz = −4 μm (vertical axis). For each actual displacement, a stack of 400 images was reconstructed, spaced 200 nm apart. The color bar represents the total intensity gradient G(z, z′) = ∫ g(z′;z)dx′dy′, again including only values of g(x′, y′, z′) > 0.

Fig. 5
Fig. 5

(a) A layer of particles resting on the surface of a coverslip, defocus +4μm. (b) The same particles, defocus +12μm. The scale bars denote 5μm in both panels. (c) Displacement of the particle layer obtained from the reconstructed optical field, as a function of actual stage displacement. The solid line shows z = z′. (d) The absolute error in position measurements from the previous panel. The data show a systematic error of approximately 150 nm, consistent with the estimate of focus positioning uncertainty. Note that the vertical scale in panel (d) has a much higher resolution than in panel (c).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

| m 1 | 1 , k d | m 1 | 1 ,
I ( r ) = | E 0 ( r ) | 2 + [ E 0 * ( r ) E s ( r ) ] + | E s ( r ) | 2 .
b ( r ) 1 + [ E 0 * ( r ) E s ( r ) | E 0 ( r ) | 2 ] .
b ( r ) 1 + [ k 2 exp ( i k r ) 2 π r ( m 1 ) V f ( θ ) ( 1 + cos θ ) ] ,
f ( θ ) = 3 ( q a ) 3 ( sin q a q a cos q a ) , where q = 2 k sin θ 2 .
h ( x , y , z ) = 1 2 π z exp ( i k r ) r
E s ( x , y , z ) = E s ( x , y , 0 ) h ( x , y , z ) .
g ( x , z ) = z I ( x , z ) I ( x , z ) S z ,
S z = ( 0 1 0 0 0 0 0 1 0 ) .

Metrics