Abstract

Orthogonal frequency division multiplexing based on radio-over-fiber schemes allows the direct use of multiple, native format wireless platforms. In combination with standard baseband provision such as Gigabit Ethernet, this provides access to a wide range of services without requiring specialized end-user equipment. However, such signals have a high laser power-bandwidth requirement which may not be a good fit to the domestic environment. Here we explore the use of low-power optical components in customer premises which interface with an intermediate optical network node. Two solutions in the context of SSMF over a CWDM optical network are described, based on either reflective or direct modulation. EVMs of better than −35 dB were achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Guillory, A. Pizzinat, P. Guignard, F. Richard, B. Charbonnier, C. Algani, and P. Chanclou. “Simultaneous implementation of gigabit ethernet, RF TV and radio mm-wave in a multiformat home area network,” in proceedings of ECOC (2011), paper We.7.C.3.
  2. M. Morant, T. Quinlan, R. Llorente, and S. Walker, “Full standard triple-play bi-directional and full-duplex CWDM transmission in passive optical networks,” in proceedings OFC (2011), paper OWB3.
  3. M. Morant, T. Quinlan, S. Walker, and R. Llorente, “Complete mitigation of brillouin scattering effects in reflective passive optical networks using triple-format OFDM radio signals,” in proceedings OFC (2011), paper JWA072.
  4. T. Quinlan, S. Dudley, M. Morant, R. Llorente, and S. Walker, “First demonstration of cooler-less, bi-directional, format-agnostic, wireless and gigabit ethernet network provision using off-the-shelf VCSELs,” in proceedings OFC (2012), paper OTh3G.1.
  5. M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
    [CrossRef]
  6. 3GPP TS 36.101 V8.8.0 “3rd Generation Partnership Project; technical specification group radio access network; Evolved universal terrestrial radio access (E-UTRA); User equipment (UE) radio transmission and reception (Release 8),” (2009).
  7. IEEE 802.16 Standard for local and metropolitan area networks “Part 16: Air interface for fixed broadband wireless access systems,” (2009).
  8. ECMA-368, “High rate ultra-wideband PHY and MAC standard,” ECMA Int. (2007).

2005 (1)

M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
[CrossRef]

Cheng, J.

M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
[CrossRef]

Huang, X. D.

M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
[CrossRef]

Lee, H. C.

M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
[CrossRef]

Lin, C. C.

M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
[CrossRef]

Liu, G. L.

M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
[CrossRef]

Murty, M. V. R.

M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
[CrossRef]

Shieh, C. L.

M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
[CrossRef]

Xu, D.

M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. V. R. Murty, X. D. Huang, G. L. Liu, C. C. Lin, D. Xu, C. L. Shieh, H. C. Lee, and J. Cheng, “Long-wavelength VCSEL-based CWDM scheme for 10-GbE links,” IEEE Photon. Technol. Lett. 17(6), 1286–1288 (2005).
[CrossRef]

Other (7)

3GPP TS 36.101 V8.8.0 “3rd Generation Partnership Project; technical specification group radio access network; Evolved universal terrestrial radio access (E-UTRA); User equipment (UE) radio transmission and reception (Release 8),” (2009).

IEEE 802.16 Standard for local and metropolitan area networks “Part 16: Air interface for fixed broadband wireless access systems,” (2009).

ECMA-368, “High rate ultra-wideband PHY and MAC standard,” ECMA Int. (2007).

J. Guillory, A. Pizzinat, P. Guignard, F. Richard, B. Charbonnier, C. Algani, and P. Chanclou. “Simultaneous implementation of gigabit ethernet, RF TV and radio mm-wave in a multiformat home area network,” in proceedings of ECOC (2011), paper We.7.C.3.

M. Morant, T. Quinlan, R. Llorente, and S. Walker, “Full standard triple-play bi-directional and full-duplex CWDM transmission in passive optical networks,” in proceedings OFC (2011), paper OWB3.

M. Morant, T. Quinlan, S. Walker, and R. Llorente, “Complete mitigation of brillouin scattering effects in reflective passive optical networks using triple-format OFDM radio signals,” in proceedings OFC (2011), paper JWA072.

T. Quinlan, S. Dudley, M. Morant, R. Llorente, and S. Walker, “First demonstration of cooler-less, bi-directional, format-agnostic, wireless and gigabit ethernet network provision using off-the-shelf VCSELs,” in proceedings OFC (2012), paper OTh3G.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Reflective bi-directional network based on R-EAT for multi-play service provision

Fig. 2
Fig. 2

(a) Reflective system experimental setup. (b) Spectrogram of combined formats at launch. (c) Frequency spectrum at launch. (d) Respective constellations and measured EVM at launch

Fig. 3
Fig. 3

(a) System diagram showing bidirectional transmission path. Measured EVM, constellations and eye diagram for UWB, WiMAX, LTE and GbE baseband signals in back-to-back configuration (0 km SSMF) for VCSEL bias 10 mA in: (b) 1541 nm DS path and (c) 1345 nm US path

Fig. 4
Fig. 4

(a) Spectrum at input to VCSELs. (b) At output of 1541nm DS device. (c) At output of 1345nm US device

Fig. 5
Fig. 5

(a) Frequency spectrum showing SBS. (b) Optical spectrum showing sidebands. (c) Positioning of RF spectrum with respect to SBS peaks

Fig. 6
Fig. 6

(a) Measured EVM of LTE, WiMAX and UWB on the absorbed path (1345 nm) vs. optical launch power. (b) EVM vs. length and received constellations and EVM after: (c) 20.2 km, (d) 25.3 km

Fig. 7
Fig. 7

(a). Measured EVM of LTE, WiMAX and UWB on the reflected path (1550 nm) vs. optical launch power. (b) EVM vs. fiber length and constellations and EVM after (c) 15 km, (d) 20.2 km

Fig. 8
Fig. 8

(a) Spectrogram and signal constellations for (b) UWB, (c) WiMAX, (d) LTE measured after 20.6 km SSMF with 10 mA VCSEL bias and (e) baseband eye diagram variation across 4-10 mA bias range for the 1541 nm DS path

Fig. 9
Fig. 9

(a) Spectrogram and signal constellations for (b) UWB, (c) WiMAX, (d) LTE measured after 20.6 km SSMF with 10 mA VCSEL bias and (e) baseband eye diagram variation across 4-10 mA bias range for the 1345 nm US path

Fig. 10
Fig. 10

EVM standard compliance with 1541 nm DS path received power after 20.6 km SSMF for: (a) UWB, (b) WiMAX and (c) LTE

Fig. 11
Fig. 11

EVM standard compliance with 1345 nm US path received power after 20.6 km SSMF for: (a) UWB, (b) WiMAX and (c) LTE

Metrics