Abstract

Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation spectroscopy in the excitation wavelength range of 850-1325 nm and compared to simulations based on a Green’s function area integral equation method. Both experimental and theoretical results show that the SPP excitation efficiency increases with decreasing wavelength in this wavelength range. This is explained both as a consequence of approaching the peak of the fibers nonlinear response at the wavelength 772 nm, and as a consequence of better coupling to SPPs due to their stronger confinement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
    [CrossRef]
  2. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78(11), 115115 (2008).
    [CrossRef]
  3. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
    [CrossRef]
  4. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source,” Nano Lett.7(9), 2784–2788 (2007).
    [CrossRef] [PubMed]
  5. R. Kiyan, C. Reinhardt, S. Passinger, A. L. Stepanov, A. Hohenau, J. R. Krenn, and B. N. Chichkov, “Rapid prototyping of optical components for surface plasmon polaritons,” Opt. Express15(7), 4205–4215 (2007).
    [CrossRef] [PubMed]
  6. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103(26), 266802 (2009).
    [CrossRef] [PubMed]
  7. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
    [CrossRef] [PubMed]
  8. L. Wang, T. Li, L. Li, W. Xia, X. G. Xu, and S. N. Zhu, “Electrically generated unidirectional surface plasmon source,” Opt. Express20(8), 8710–8717 (2012).
    [CrossRef] [PubMed]
  9. H. E. Ruda and A. Shik, “Nonlinear optical phenomena in nanowires,” J. Appl. Phys.101(3), 034312 (2007).
    [CrossRef]
  10. J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B78(20), 205322 (2008).
    [CrossRef]
  11. H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B72(11), 115308 (2005).
    [CrossRef]
  12. T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Optical second-harmonic spectroscopy of Au nanowires,” J. Appl. Phys.95(9), 5002–5005 (2004).
    [CrossRef]
  13. J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun.283(7), 1514–1518 (2010).
    [CrossRef]
  14. K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B96(4), 821–826 (2009).
    [CrossRef]
  15. E. Skovsen, T. Søndergaard, J. Fiutowski, H.-G. Rubahn, and K. Pedersen, “Surface plasmon polariton generation by light scattering off aligned organic nanofibers,” J. Opt. Soc. Am. B29(2), 249–256 (2012).
    [CrossRef]
  16. S. I. Bozhevolnyi and V. Z. Lozovski, “Self-consistent model for second-harmonic near-field microscopy,” Phys. Rev. B61(16), 11139–11150 (2000).
    [CrossRef]
  17. A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys.82(9), 4177–4182 (1997).
    [CrossRef]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  19. T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi, B Basic Res.244(10), 3448–3462 (2007).
    [CrossRef]
  20. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).
  21. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  22. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
    [CrossRef]
  23. L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small7, 2460–2463 (2011).
    [PubMed]
  24. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
    [CrossRef]

2012

2011

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small7, 2460–2463 (2011).
[PubMed]

2010

J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun.283(7), 1514–1518 (2010).
[CrossRef]

2009

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B96(4), 821–826 (2009).
[CrossRef]

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103(26), 266802 (2009).
[CrossRef] [PubMed]

2008

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78(11), 115115 (2008).
[CrossRef]

J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B78(20), 205322 (2008).
[CrossRef]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

2007

T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi, B Basic Res.244(10), 3448–3462 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

R. Kiyan, C. Reinhardt, S. Passinger, A. L. Stepanov, A. Hohenau, J. R. Krenn, and B. N. Chichkov, “Rapid prototyping of optical components for surface plasmon polaritons,” Opt. Express15(7), 4205–4215 (2007).
[CrossRef] [PubMed]

H. E. Ruda and A. Shik, “Nonlinear optical phenomena in nanowires,” J. Appl. Phys.101(3), 034312 (2007).
[CrossRef]

2005

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B72(11), 115308 (2005).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

2004

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Optical second-harmonic spectroscopy of Au nanowires,” J. Appl. Phys.95(9), 5002–5005 (2004).
[CrossRef]

2000

S. I. Bozhevolnyi and V. Z. Lozovski, “Self-consistent model for second-harmonic near-field microscopy,” Phys. Rev. B61(16), 11139–11150 (2000).
[CrossRef]

1997

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys.82(9), 4177–4182 (1997).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Aussenegg, F. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

Boltasseva, A.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78(11), 115115 (2008).
[CrossRef]

Bouhelier, A.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78(11), 115115 (2008).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

S. I. Bozhevolnyi and V. Z. Lozovski, “Self-consistent model for second-harmonic near-field microscopy,” Phys. Rev. B61(16), 11139–11150 (2000).
[CrossRef]

Brandstätter, C.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys.82(9), 4177–4182 (1997).
[CrossRef]

Brewer, J.

J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun.283(7), 1514–1518 (2010).
[CrossRef]

Brucoli, G.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78(11), 115115 (2008).
[CrossRef]

Chichkov, B. N.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Dadap, J. I.

J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B78(20), 205322 (2008).
[CrossRef]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Ditlbacher, H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Drezet, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Fiutowski, J.

García-Vidal, F. J.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78(11), 115115 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Hohenau, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

R. Kiyan, C. Reinhardt, S. Passinger, A. L. Stepanov, A. Hohenau, J. R. Krenn, and B. N. Chichkov, “Rapid prototyping of optical components for surface plasmon polaritons,” Opt. Express15(7), 4205–4215 (2007).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kitahara, T.

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Optical second-harmonic spectroscopy of Au nanowires,” J. Appl. Phys.95(9), 5002–5005 (2004).
[CrossRef]

Kiyan, R.

Kjelstrup-Hansen, J.

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small7, 2460–2463 (2011).
[PubMed]

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Krenn, J. R.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

R. Kiyan, C. Reinhardt, S. Passinger, A. L. Stepanov, A. Hohenau, J. R. Krenn, and B. N. Chichkov, “Rapid prototyping of optical components for surface plasmon polaritons,” Opt. Express15(7), 4205–4215 (2007).
[CrossRef] [PubMed]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Leising, G.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys.82(9), 4177–4182 (1997).
[CrossRef]

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Li, L.

Li, T.

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Lozovski, V. Z.

S. I. Bozhevolnyi and V. Z. Lozovski, “Self-consistent model for second-harmonic near-field microscopy,” Phys. Rev. B61(16), 11139–11150 (2000).
[CrossRef]

Martín-Moreno, L.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78(11), 115115 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Meghdadi, F.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys.82(9), 4177–4182 (1997).
[CrossRef]

Mizutani, G.

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Optical second-harmonic spectroscopy of Au nanowires,” J. Appl. Phys.95(9), 5002–5005 (2004).
[CrossRef]

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Niko, A.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys.82(9), 4177–4182 (1997).
[CrossRef]

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103(26), 266802 (2009).
[CrossRef] [PubMed]

Palomba, S.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103(26), 266802 (2009).
[CrossRef] [PubMed]

Passinger, S.

Pedersen, K.

E. Skovsen, T. Søndergaard, J. Fiutowski, H.-G. Rubahn, and K. Pedersen, “Surface plasmon polariton generation by light scattering off aligned organic nanofibers,” J. Opt. Soc. Am. B29(2), 249–256 (2012).
[CrossRef]

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B96(4), 821–826 (2009).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Quidant, R.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103(26), 266802 (2009).
[CrossRef] [PubMed]

Radko, I. P.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78(11), 115115 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Rafaelsen, J.

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B96(4), 821–826 (2009).
[CrossRef]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Reinhardt, C.

Renger, J.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103(26), 266802 (2009).
[CrossRef] [PubMed]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Rubahn, H.-G.

E. Skovsen, T. Søndergaard, J. Fiutowski, H.-G. Rubahn, and K. Pedersen, “Surface plasmon polariton generation by light scattering off aligned organic nanofibers,” J. Opt. Soc. Am. B29(2), 249–256 (2012).
[CrossRef]

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small7, 2460–2463 (2011).
[PubMed]

J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun.283(7), 1514–1518 (2010).
[CrossRef]

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B96(4), 821–826 (2009).
[CrossRef]

Ruda, H. E.

H. E. Ruda and A. Shik, “Nonlinear optical phenomena in nanowires,” J. Appl. Phys.101(3), 034312 (2007).
[CrossRef]

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B72(11), 115308 (2005).
[CrossRef]

Sano, H.

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Optical second-harmonic spectroscopy of Au nanowires,” J. Appl. Phys.95(9), 5002–5005 (2004).
[CrossRef]

Schiek, M.

J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun.283(7), 1514–1518 (2010).
[CrossRef]

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B96(4), 821–826 (2009).
[CrossRef]

Shik, A.

H. E. Ruda and A. Shik, “Nonlinear optical phenomena in nanowires,” J. Appl. Phys.101(3), 034312 (2007).
[CrossRef]

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B72(11), 115308 (2005).
[CrossRef]

Skovsen, E.

Søndergaard, T.

E. Skovsen, T. Søndergaard, J. Fiutowski, H.-G. Rubahn, and K. Pedersen, “Surface plasmon polariton generation by light scattering off aligned organic nanofibers,” J. Opt. Soc. Am. B29(2), 249–256 (2012).
[CrossRef]

T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi, B Basic Res.244(10), 3448–3462 (2007).
[CrossRef]

Steinberger, B.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Stepanov, A. L.

Sugawara, A.

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Optical second-harmonic spectroscopy of Au nanowires,” J. Appl. Phys.95(9), 5002–5005 (2004).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Tasch, S.

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys.82(9), 4177–4182 (1997).
[CrossRef]

Tavares, L.

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small7, 2460–2463 (2011).
[PubMed]

van Hulst, N.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103(26), 266802 (2009).
[CrossRef] [PubMed]

Wang, L.

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Xia, W.

Xu, X. G.

Zhu, S. N.

Appl. Phys. B

K. Pedersen, M. Schiek, J. Rafaelsen, and H.-G. Rubahn, “Second-harmonic generation spectroscopy on organic nanofibers,” Appl. Phys. B96(4), 821–826 (2009).
[CrossRef]

J. Appl. Phys.

H. E. Ruda and A. Shik, “Nonlinear optical phenomena in nanowires,” J. Appl. Phys.101(3), 034312 (2007).
[CrossRef]

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Optical second-harmonic spectroscopy of Au nanowires,” J. Appl. Phys.95(9), 5002–5005 (2004).
[CrossRef]

A. Niko, S. Tasch, F. Meghdadi, C. Brandstätter, and G. Leising, “Red-green-blue emission of parahexaphenyl devices with color-converting media,” J. Appl. Phys.82(9), 4177–4182 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Mater. Sci. Eng. B

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B149(3), 220–229 (2008).
[CrossRef]

Nano Lett.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Nat. Phys.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007).
[CrossRef]

Opt. Commun.

J. Brewer, M. Schiek, and H.-G. Rubahn, “Nonlinear optical properties of CNHP4 nanofibers: Molecular dipole orientations and two photon absorption cross-sections,” Opt. Commun.283(7), 1514–1518 (2010).
[CrossRef]

Opt. Express

Phys. Rev. B

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78(11), 115115 (2008).
[CrossRef]

J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B78(20), 205322 (2008).
[CrossRef]

H. E. Ruda and A. Shik, “Polarization-sensitive optical phenomena in semiconducting and metallic nanowires,” Phys. Rev. B72(11), 115308 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

S. I. Bozhevolnyi and V. Z. Lozovski, “Self-consistent model for second-harmonic near-field microscopy,” Phys. Rev. B61(16), 11139–11150 (2000).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Phys. Rev. Lett.

J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103(26), 266802 (2009).
[CrossRef] [PubMed]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106(22), 226802 (2011).
[CrossRef] [PubMed]

Phys. Status Solidi, B Basic Res.

T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi, B Basic Res.244(10), 3448–3462 (2007).
[CrossRef]

Phys. Today

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

Small

L. Tavares, J. Kjelstrup-Hansen, and H.-G. Rubahn, “Efficient roll-on transfer technique for well-aligned organic nanofibers,” Small7, 2460–2463 (2011).
[PubMed]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Light at the second-harmonic frequency, generated inside the CNHP4 nanofibers, couple directly to SPP modes propagating away from the fiber along the silver-air interface. Because of the small thickness of the silver film light coupled to SPPs can leak out into the glass substrate on the opposite side of the silver film. We consider light propagating in the plane perpendicular to the long axis of the fibers that are oriented along the y-axis. (b) Schematic of the experimental setup used: D: Iris diaphragm, L: Lens, F: Colored glass filter, CP: Cylindrical prism, Ag: 40 nm silver layer, ONF: Organic nanofibers, PMT: Photo multiplier tube. The inserts show a zoom on the cylindrical prism with the sample mounted on the flat surface (upper right), and a fluorescence image of the irregular array of deposited fibers (lower left).

Fig. 2
Fig. 2

Calculated normalized SH power per unit angle leaking into the quartz substrate (Eq. (4)) when illuminating a CNHP4 fiber of width 400 nm and height 100 nm placed on the air-silver interface of a planar air-(40 nm silver)-quartz stack with a normally incident p-polarized FH plane wave. (a) Assuming a wavelength independent χ xxx (2) =1 of the fiber, and (b) using a fit to the measured χ xxx (2) of CNHP4 from [14].

Fig. 3
Fig. 3

(a) Simulated angular spectra of the scattered and SPP leakage radiation upon SHG in a single CHHP4 nanofiber on top of a quartz substrate coated with a 40 nm silver film. (b) Normalized cross sections at three selected wavelengths (c) A zoom on the SPP leakage peaks in the angular range 42-48 degrees. FWHM for each of the three curves are 1.69⁰, 1.05⁰, and 0.70⁰, respectively.

Fig. 4
Fig. 4

(a) 3D plot of the relative SHG signal measured as a function of the excitation wavelength and the detection angle. (b) Cross sections of the SPP leakage peaks for a few selected excitation wavelengths. FWHM for each of the three curves are 7.5⁰, 4.9⁰, and 4.6⁰, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E(r; ω FH )= E 0 (r; ω FH )+ G(r,r'; ω FH ) ω FH 2 c 2 ( ε(r'; ω FH ) ε ref (r'; ω FH ) )E(r'; ω FH ) d 2 r' ,
A i G d (r,r') k 0 2 d 2 r' = A i ( I+ 1 k 0 2 ) 1 4i H 0 (2) ( k 0 |rr'|) k 0 2 d 2 r' 1 2 I,
P(r; ω SH )= x ^ ε 0 χ xxx (2) ( ω SH ) [ E x (r; ω FH ) ] 2 ,
E(r; ω SH )= fiber G(r,r'; ω SH ) ω SH 2 c 2 [ P(r'; ω SH ) ε 0 +( ε(r'; ω SH ) ε ref (r'; ω SH ) )E(r'; ω SH ) ] d 2 r'.
d P SH,normalized dθ = | E ff (r; ω SH ) | 2 r n quartz | E i | 4 .
θ peak sin 1 ( Re( n spp ) n quartz ),
L= λ SH 2π Im( 1+ ε silver ),
χ xxx (2) ( ω SH ) 2A π W 2 4 ( ω SH /1eV X c ) 2 + W 2 ,

Metrics