Abstract

We report on the experimental observation of green and infrared light emission from a whispering gallery mode resonator fabricated with calcium fluoride, when the resonator is pumped with 795 nm light. The spectrum of light exiting the resonator caused by residual impurities contains both infrared lines corresponding to the emission pattern of Nd3+ ions and green light originating from two-photon pumping and subsequent emission of Er3+ ions. The process takes place due to the high quality factor (Q > 1010) of the resonator, even when the expected concentration of the extrinsic impurities approaches a part per million level. The potential for optical cooling of a monolithic solid state resonator via the upconversion phenomenon is explored theoretically.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  2. L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, “Crystalline whispering gallery mode resonators in optics and photonics,” in Practical Applications of Microresonators in Optics and Photonics, A. B. Matsko, ed. (CRC Press, 2009).
    [CrossRef]
  3. L. Maleki, “Sources: the optoelectronic oscillator,” Nature Photon. 5, 728–730 (2011).
    [CrossRef]
  4. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and Lute Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
    [CrossRef] [PubMed]
  5. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence-spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [CrossRef]
  6. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3, 67–84 (2009).
    [CrossRef]
  7. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
    [CrossRef]
  8. P. Walsh and G. Kemeny, “Laser operation without spikes in a ruby ring,” J. Appl. Phys. 34, 956–957 (1963).
    [CrossRef]
  9. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
    [CrossRef] [PubMed]
  10. K. Miura, K. Tanaka, and K. Hirao, “CW laser oscillation on both the the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions using a fluoride glass microsphere,” J. Non-Cryst. Solids 213, 276–280 (1997).
    [CrossRef]
  11. F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
    [CrossRef]
  12. K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38, 1355–1357 (2002).
    [CrossRef]
  13. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
    [CrossRef]
  14. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
    [CrossRef]
  15. D. G. O’Shea, J. M. Ward, B. J. Shortt, M. Mortier, P. Feron, and S. Nic Chormaic, “Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres,” Eur. Phys. J.: Appl. Phys. 40, 181–188 (2007).
    [CrossRef]
  16. I. S. Grudinin, A. Savchenkov, A. B. Matsko, D. Strekalov, V. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
    [CrossRef]
  17. The source of the resonator material was Edmund Optics, part number NT47-681. The material was not specifically advertised as being doped with rare earth impurities.
  18. M. Robinson and C. K. Asawa, “Stimulated Emission from Nd3+ and Yb3+ in noncubic sites of neodymium-and ytterbium-doped CaF2,” J. Appl. Phys. 38, 4495–4501 (1967).
    [CrossRef]
  19. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
    [CrossRef] [PubMed]
  20. M. L. Gorodetsky, A. D. Prymikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051 (2000).
    [CrossRef]
  21. A. A. Savchenkov, A. B. Matsko, M. Mohageg, and L. Maleki, “Ringdown spectroscopy of stimulated Raman scattering in a whispering gallery mode resonator,” Opt. Lett. 32, 497–499 (2007).
    [CrossRef] [PubMed]
  22. M. L. Gorodetsky and A. E. Fromin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
    [CrossRef]
  23. I. S. Grudinin and L. Maleki, “Ultralow threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 168–170 (2007).
    [CrossRef]
  24. J. P. Russell, “The Raman spectrum of calcium fluoride,” Proc. Phys. Soc. 85, 194–196 (1965).
    [CrossRef]
  25. A. R. Gee, D. C. OShea, and H. Z. Cummins, “Raman scattering and fluorescence in calcium fluoride,” Solid State Commun. 4, 43–46 (1965).
    [CrossRef]
  26. R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13, 423–482 (1964).
    [CrossRef]
  27. An interactive tool to determine Raman spectra for a variety of natural minerals can be found at http://rruff.info .
  28. A. A. Savchenkov, A. B. Matsko, D. V. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
    [CrossRef]
  29. A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett. 31, 1313–1315 (2006).
    [CrossRef] [PubMed]
  30. A. A. Kaminskii, “Stimulated emission spectroscopy: a review,” Opt. Quantum Electron. 3, 19–35 (1971).
  31. R. D. Allen, “Variations in chemical and physical properties of fluorite,” Am. Mineral. 37, 910–930 (1952).
  32. U. Ranon and W. Low, “Electron spin resonance of Er3+ in CaF2,” Phys. Rev. 132, 1609–1611 (1963).
    [CrossRef]
  33. A. Sidike, K.-H. Lee, I. Kusachi, and N. Yamashita, “Photoluminescence properties of a natural fluorite,” J. Mineral. Petrol. Sci. 95, 228–235 (2000).
    [CrossRef]

2011 (1)

L. Maleki, “Sources: the optoelectronic oscillator,” Nature Photon. 5, 728–730 (2011).
[CrossRef]

2010 (1)

2009 (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3, 67–84 (2009).
[CrossRef]

2007 (4)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and Lute Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[CrossRef] [PubMed]

D. G. O’Shea, J. M. Ward, B. J. Shortt, M. Mortier, P. Feron, and S. Nic Chormaic, “Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres,” Eur. Phys. J.: Appl. Phys. 40, 181–188 (2007).
[CrossRef]

I. S. Grudinin and L. Maleki, “Ultralow threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 168–170 (2007).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, M. Mohageg, and L. Maleki, “Ringdown spectroscopy of stimulated Raman scattering in a whispering gallery mode resonator,” Opt. Lett. 32, 497–499 (2007).
[CrossRef] [PubMed]

2006 (3)

M. L. Gorodetsky and A. E. Fromin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett. 31, 1313–1315 (2006).
[CrossRef] [PubMed]

I. S. Grudinin, A. Savchenkov, A. B. Matsko, D. Strekalov, V. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[CrossRef]

2004 (1)

A. A. Savchenkov, A. B. Matsko, D. V. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[CrossRef]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

2002 (1)

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38, 1355–1357 (2002).
[CrossRef]

2000 (3)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
[CrossRef]

M. L. Gorodetsky, A. D. Prymikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051 (2000).
[CrossRef]

A. Sidike, K.-H. Lee, I. Kusachi, and N. Yamashita, “Photoluminescence properties of a natural fluorite,” J. Mineral. Petrol. Sci. 95, 228–235 (2000).
[CrossRef]

1999 (1)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
[CrossRef]

1998 (1)

F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
[CrossRef]

1997 (1)

K. Miura, K. Tanaka, and K. Hirao, “CW laser oscillation on both the the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions using a fluoride glass microsphere,” J. Non-Cryst. Solids 213, 276–280 (1997).
[CrossRef]

1996 (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence-spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

1971 (1)

A. A. Kaminskii, “Stimulated emission spectroscopy: a review,” Opt. Quantum Electron. 3, 19–35 (1971).

1967 (1)

M. Robinson and C. K. Asawa, “Stimulated Emission from Nd3+ and Yb3+ in noncubic sites of neodymium-and ytterbium-doped CaF2,” J. Appl. Phys. 38, 4495–4501 (1967).
[CrossRef]

1965 (2)

J. P. Russell, “The Raman spectrum of calcium fluoride,” Proc. Phys. Soc. 85, 194–196 (1965).
[CrossRef]

A. R. Gee, D. C. OShea, and H. Z. Cummins, “Raman scattering and fluorescence in calcium fluoride,” Solid State Commun. 4, 43–46 (1965).
[CrossRef]

1964 (1)

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13, 423–482 (1964).
[CrossRef]

1963 (2)

U. Ranon and W. Low, “Electron spin resonance of Er3+ in CaF2,” Phys. Rev. 132, 1609–1611 (1963).
[CrossRef]

P. Walsh and G. Kemeny, “Laser operation without spikes in a ruby ring,” J. Appl. Phys. 34, 956–957 (1963).
[CrossRef]

1961 (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

1952 (1)

R. D. Allen, “Variations in chemical and physical properties of fluorite,” Am. Mineral. 37, 910–930 (1952).

Allen, R. D.

R. D. Allen, “Variations in chemical and physical properties of fluorite,” Am. Mineral. 37, 910–930 (1952).

Asawa, C. K.

M. Robinson and C. K. Asawa, “Stimulated Emission from Nd3+ and Yb3+ in noncubic sites of neodymium-and ytterbium-doped CaF2,” J. Appl. Phys. 38, 4495–4501 (1967).
[CrossRef]

Barber, P. W.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence-spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence-spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Bond, W. L.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Chang, R. K.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence-spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Cummins, H. Z.

A. R. Gee, D. C. OShea, and H. Z. Cummins, “Raman scattering and fluorescence in calcium fluoride,” Solid State Commun. 4, 43–46 (1965).
[CrossRef]

Domokos, P.

F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
[CrossRef]

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3, 67–84 (2009).
[CrossRef]

Feron, P.

D. G. O’Shea, J. M. Ward, B. J. Shortt, M. Mortier, P. Feron, and S. Nic Chormaic, “Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres,” Eur. Phys. J.: Appl. Phys. 40, 181–188 (2007).
[CrossRef]

Fromin, A. E.

M. L. Gorodetsky and A. E. Fromin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
[CrossRef]

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Gee, A. R.

A. R. Gee, D. C. OShea, and H. Z. Cummins, “Raman scattering and fluorescence in calcium fluoride,” Solid State Commun. 4, 43–46 (1965).
[CrossRef]

Gorodetsky, M. L.

M. L. Gorodetsky and A. E. Fromin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
[CrossRef]

M. L. Gorodetsky, A. D. Prymikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051 (2000).
[CrossRef]

Grudinin, I. S.

I. S. Grudinin and L. Maleki, “Ultralow threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 168–170 (2007).
[CrossRef]

I. S. Grudinin, A. Savchenkov, A. B. Matsko, D. Strekalov, V. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[CrossRef]

Hare, J.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
[CrossRef]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
[CrossRef]

F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Haroche, S.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
[CrossRef]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
[CrossRef]

F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Hirao, K.

K. Miura, K. Tanaka, and K. Hirao, “CW laser oscillation on both the the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions using a fluoride glass microsphere,” J. Non-Cryst. Solids 213, 276–280 (1997).
[CrossRef]

Ilchenko, V.

I. S. Grudinin, A. Savchenkov, A. B. Matsko, D. Strekalov, V. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[CrossRef]

Ilchenko, V. S.

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and Lute Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, D. V. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[CrossRef]

M. L. Gorodetsky, A. D. Prymikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051 (2000).
[CrossRef]

F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
[CrossRef]

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, “Crystalline whispering gallery mode resonators in optics and photonics,” in Practical Applications of Microresonators in Optics and Photonics, A. B. Matsko, ed. (CRC Press, 2009).
[CrossRef]

Jahier, E.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
[CrossRef]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
[CrossRef]

Kaiser, W.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, “Stimulated emission spectroscopy: a review,” Opt. Quantum Electron. 3, 19–35 (1971).

Kemeny, G.

P. Walsh and G. Kemeny, “Laser operation without spikes in a ruby ring,” J. Appl. Phys. 34, 956–957 (1963).
[CrossRef]

Kusachi, I.

A. Sidike, K.-H. Lee, I. Kusachi, and N. Yamashita, “Photoluminescence properties of a natural fluorite,” J. Mineral. Petrol. Sci. 95, 228–235 (2000).
[CrossRef]

Kusawake, K.

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38, 1355–1357 (2002).
[CrossRef]

Lee, K.-H.

A. Sidike, K.-H. Lee, I. Kusachi, and N. Yamashita, “Photoluminescence properties of a natural fluorite,” J. Mineral. Petrol. Sci. 95, 228–235 (2000).
[CrossRef]

Lefevre, V.

F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
[CrossRef]

Lefevre-Seguin, V.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
[CrossRef]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Liang, W.

Lissillour, F.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
[CrossRef]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
[CrossRef]

Long, R.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
[CrossRef]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
[CrossRef]

Loudon, R.

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13, 423–482 (1964).
[CrossRef]

Low, W.

U. Ranon and W. Low, “Electron spin resonance of Er3+ in CaF2,” Phys. Rev. 132, 1609–1611 (1963).
[CrossRef]

Maleki, L.

L. Maleki, “Sources: the optoelectronic oscillator,” Nature Photon. 5, 728–730 (2011).
[CrossRef]

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, M. Mohageg, and L. Maleki, “Ringdown spectroscopy of stimulated Raman scattering in a whispering gallery mode resonator,” Opt. Lett. 32, 497–499 (2007).
[CrossRef] [PubMed]

I. S. Grudinin and L. Maleki, “Ultralow threshold Raman lasing with CaF2 resonators,” Opt. Lett. 32, 168–170 (2007).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett. 31, 1313–1315 (2006).
[CrossRef] [PubMed]

I. S. Grudinin, A. Savchenkov, A. B. Matsko, D. Strekalov, V. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, D. V. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[CrossRef]

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, “Crystalline whispering gallery mode resonators in optics and photonics,” in Practical Applications of Microresonators in Optics and Photonics, A. B. Matsko, ed. (CRC Press, 2009).
[CrossRef]

Maleki, Lute

Matsko, A. B.

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, M. Mohageg, and L. Maleki, “Ringdown spectroscopy of stimulated Raman scattering in a whispering gallery mode resonator,” Opt. Lett. 32, 497–499 (2007).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and Lute Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[CrossRef] [PubMed]

I. S. Grudinin, A. Savchenkov, A. B. Matsko, D. Strekalov, V. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett. 31, 1313–1315 (2006).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, D. V. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[CrossRef]

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, “Crystalline whispering gallery mode resonators in optics and photonics,” in Practical Applications of Microresonators in Optics and Photonics, A. B. Matsko, ed. (CRC Press, 2009).
[CrossRef]

Miura, K.

K. Miura, K. Tanaka, and K. Hirao, “CW laser oscillation on both the the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions using a fluoride glass microsphere,” J. Non-Cryst. Solids 213, 276–280 (1997).
[CrossRef]

Mohageg, M.

Mortier, M.

D. G. O’Shea, J. M. Ward, B. J. Shortt, M. Mortier, P. Feron, and S. Nic Chormaic, “Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres,” Eur. Phys. J.: Appl. Phys. 40, 181–188 (2007).
[CrossRef]

Nic Chormaic, S.

D. G. O’Shea, J. M. Ward, B. J. Shortt, M. Mortier, P. Feron, and S. Nic Chormaic, “Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres,” Eur. Phys. J.: Appl. Phys. 40, 181–188 (2007).
[CrossRef]

Nunoshita, M.

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38, 1355–1357 (2002).
[CrossRef]

O’Shea, D. G.

D. G. O’Shea, J. M. Ward, B. J. Shortt, M. Mortier, P. Feron, and S. Nic Chormaic, “Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres,” Eur. Phys. J.: Appl. Phys. 40, 181–188 (2007).
[CrossRef]

Ohta, J.

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38, 1355–1357 (2002).
[CrossRef]

OShea, D. C.

A. R. Gee, D. C. OShea, and H. Z. Cummins, “Raman scattering and fluorescence in calcium fluoride,” Solid State Commun. 4, 43–46 (1965).
[CrossRef]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence-spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Prymikov, A. D.

Raimond, J. M.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
[CrossRef]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
[CrossRef]

F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Ranon, U.

U. Ranon and W. Low, “Electron spin resonance of Er3+ in CaF2,” Phys. Rev. 132, 1609–1611 (1963).
[CrossRef]

Robinson, M.

M. Robinson and C. K. Asawa, “Stimulated Emission from Nd3+ and Yb3+ in noncubic sites of neodymium-and ytterbium-doped CaF2,” J. Appl. Phys. 38, 4495–4501 (1967).
[CrossRef]

Roch, J. F.

F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
[CrossRef]

Russell, J. P.

J. P. Russell, “The Raman spectrum of calcium fluoride,” Proc. Phys. Soc. 85, 194–196 (1965).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Sasagawa, K.

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38, 1355–1357 (2002).
[CrossRef]

Savchenkov, A.

I. S. Grudinin, A. Savchenkov, A. B. Matsko, D. Strekalov, V. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[CrossRef]

Savchenkov, A. A.

Seidel, D.

Sheik-Bahae, M.

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3, 67–84 (2009).
[CrossRef]

Shortt, B. J.

D. G. O’Shea, J. M. Ward, B. J. Shortt, M. Mortier, P. Feron, and S. Nic Chormaic, “Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres,” Eur. Phys. J.: Appl. Phys. 40, 181–188 (2007).
[CrossRef]

Sidike, A.

A. Sidike, K.-H. Lee, I. Kusachi, and N. Yamashita, “Photoluminescence properties of a natural fluorite,” J. Mineral. Petrol. Sci. 95, 228–235 (2000).
[CrossRef]

Strekalov, D.

I. S. Grudinin, A. Savchenkov, A. B. Matsko, D. Strekalov, V. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[CrossRef]

Strekalov, D. V.

A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, “Parametric oscillations in a whispering gallery resonator,” Opt. Lett. 31, 1313–1315 (2006).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, D. V. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[CrossRef]

Tanaka, K.

K. Miura, K. Tanaka, and K. Hirao, “CW laser oscillation on both the the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions using a fluoride glass microsphere,” J. Non-Cryst. Solids 213, 276–280 (1997).
[CrossRef]

Treussart, F.

F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

von Klitzing, W.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
[CrossRef]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
[CrossRef]

Walsh, P.

P. Walsh and G. Kemeny, “Laser operation without spikes in a ruby ring,” J. Appl. Phys. 34, 956–957 (1963).
[CrossRef]

Ward, J. M.

D. G. O’Shea, J. M. Ward, B. J. Shortt, M. Mortier, P. Feron, and S. Nic Chormaic, “Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres,” Eur. Phys. J.: Appl. Phys. 40, 181–188 (2007).
[CrossRef]

Yamashita, N.

A. Sidike, K.-H. Lee, I. Kusachi, and N. Yamashita, “Photoluminescence properties of a natural fluorite,” J. Mineral. Petrol. Sci. 95, 228–235 (2000).
[CrossRef]

Adv. Phys. (1)

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13, 423–482 (1964).
[CrossRef]

Am. Mineral. (1)

R. D. Allen, “Variations in chemical and physical properties of fluorite,” Am. Mineral. 37, 910–930 (1952).

Electron. Lett. (2)

K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38, 1355–1357 (2002).
[CrossRef]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold lasing in Er3+ doped ZBLAN microsphere,” Electron. Lett. 35, 1745–1746 (1999).
[CrossRef]

Eur. Phys. J.: Appl. Phys. (1)

D. G. O’Shea, J. M. Ward, B. J. Shortt, M. Mortier, P. Feron, and S. Nic Chormaic, “Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres,” Eur. Phys. J.: Appl. Phys. 40, 181–188 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. L. Gorodetsky and A. E. Fromin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
[CrossRef]

J. Appl. Phys. (2)

M. Robinson and C. K. Asawa, “Stimulated Emission from Nd3+ and Yb3+ in noncubic sites of neodymium-and ytterbium-doped CaF2,” J. Appl. Phys. 38, 4495–4501 (1967).
[CrossRef]

P. Walsh and G. Kemeny, “Laser operation without spikes in a ruby ring,” J. Appl. Phys. 34, 956–957 (1963).
[CrossRef]

J. Lumin. (1)

F. Treussart, V. S. Ilchenko, J. F. Roch, P. Domokos, J. Hare, V. Lefevre, J. M. Raimond, and S. Haroche, “Whispering gallery mode microlaser at liquid Helium temperature,” J. Lumin. 76, 670–673 (1998).
[CrossRef]

J. Mineral. Petrol. Sci. (1)

A. Sidike, K.-H. Lee, I. Kusachi, and N. Yamashita, “Photoluminescence properties of a natural fluorite,” J. Mineral. Petrol. Sci. 95, 228–235 (2000).
[CrossRef]

J. Non-Cryst. Solids (1)

K. Miura, K. Tanaka, and K. Hirao, “CW laser oscillation on both the the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions using a fluoride glass microsphere,” J. Non-Cryst. Solids 213, 276–280 (1997).
[CrossRef]

J. Opt. B: Quantum Semi-classical Opt. (1)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semi-classical Opt. 2, 204–206 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3, 67–84 (2009).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Nature Photon. (1)

L. Maleki, “Sources: the optoelectronic oscillator,” Nature Photon. 5, 728–730 (2011).
[CrossRef]

Opt. Commun. (1)

I. S. Grudinin, A. Savchenkov, A. B. Matsko, D. Strekalov, V. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

A. A. Kaminskii, “Stimulated emission spectroscopy: a review,” Opt. Quantum Electron. 3, 19–35 (1971).

Phys. Rev. (2)

U. Ranon and W. Low, “Electron spin resonance of Er3+ in CaF2,” Phys. Rev. 132, 1609–1611 (1963).
[CrossRef]

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[CrossRef]

Phys. Rev. A (1)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence-spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, D. V. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode CaF2 resonator,” Phys. Rev. Lett. 93, 243905 (2004).
[CrossRef]

Proc. Phys. Soc. (1)

J. P. Russell, “The Raman spectrum of calcium fluoride,” Proc. Phys. Soc. 85, 194–196 (1965).
[CrossRef]

Solid State Commun. (1)

A. R. Gee, D. C. OShea, and H. Z. Cummins, “Raman scattering and fluorescence in calcium fluoride,” Solid State Commun. 4, 43–46 (1965).
[CrossRef]

Other (3)

An interactive tool to determine Raman spectra for a variety of natural minerals can be found at http://rruff.info .

L. Maleki, V. S. Ilchenko, A. A. Savchenkov, and A. B. Matsko, “Crystalline whispering gallery mode resonators in optics and photonics,” in Practical Applications of Microresonators in Optics and Photonics, A. B. Matsko, ed. (CRC Press, 2009).
[CrossRef]

The source of the resonator material was Edmund Optics, part number NT47-681. The material was not specifically advertised as being doped with rare earth impurities.

Supplementary Material (1)

» Media 1: JPG (834 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup. Laser light is coupled to the WGM resonator through a glass prism. The backscattered light injection locks the laser to the selected mode of the resonator, and keeps the laser in lock through the experiment. A second (output) prism is used to collect light transmitted through the resonator. The entire experimental platform including laser and the resonator, was thermally stabilized.

Fig. 2
Fig. 2

Resonator ring down measurement to determine Q-factor. The red dots represent the measured data, the solid blue line is an exponential decay fit to the low-Q (high intensity) regime, and the dashed blue line is an exponential decay fit to the high-Q (low power) regime.

Fig. 3
Fig. 3

High-resolution detail of the emission spectrum in 1025–1100 nm wavelength range. Emission peaks at 1035 nm, 1045 nm, 1063 nm, and 1092 nm are evident. The inset shows the details of the 1063 nm line takes with smaller pump power. Since the resonator has a very dense spectrum, but the number of emission lines is limited, we expect that we observe a coherent IR emission (lasing) from the resonator.

Fig. 4
Fig. 4

Observation of frequency upconversion in the resonator. Light input at 795 nm ultimately produces a distinct green emission. Scratches along the resonator surfaces, prominent at 1:00, 5:00, 7:00, 8:00, and 11:00, facilitate viewing of the green light.

Fig. 5
Fig. 5

Multi-phonon Raman scattering spectrum. Five Raman Stokes lines corresponding to phonon energy of 320 cm−1 are evident, and a single Stokes line corresponding to phonon energy of 1400 cm−1.

Fig. 6
Fig. 6

Emission spectrum of the resonator with a fundamental WGM pumped. Line a is the carrier, line b is the first Stokes component. The second Stokes component is not labeled. Lines c and d are the result of four wave mixing between the carrier a and the first Stokes component b. This process does not result from impurities of the resonator host material. The frequency detuning, Δω ≃ 1.4 THz, is an integer number of the free spectral range (FSR) of the resonator, corresponding to 175 FSR.

Fig. 7
Fig. 7

Energy level diagram of (a) Nd3+ and (b) Er3+ ions (not to scale). When the pump laser excites Nd3+ ions, light at 1035, 1045, 1090, and 1064 nm is produced. All emissions are co-resonant with the WGM resonances (as evidenced by the groups of peaks in Fig. 3. Resonant excitation of Er3+ ions through a two-photon absorption process results in green light generation. The 795 nm pump is up converted to 530 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P cool P a = f e f p f p ,

Metrics