Abstract

The possibility to control the room temperature Er3+ photoluminescence efficiency in silica is investigated in terms of the damage produced in Er-doped silica by implantations at different fluences with Xe or Au ions. These implantations are tailored to reproduce the same level of damage in Er-doped silica. The remarkable differences in terms of the photoluminescence intensity between Xe- and Au-irradiated samples allowed to decouple the detrimental effect of the implantation damage on the photoluminescence from the beneficial broad-band energy transfer process provided by molecule-like Au clusters formed upon thermal annealing. The evolution of the implantation damage is followed by photoluminescence and correlated to the local Er-site by x-ray absorption spectroscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
    [CrossRef]
  2. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
    [CrossRef]
  3. A. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26, 225–284 (2002).
    [CrossRef]
  4. F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976).
    [CrossRef]
  5. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+-doped aluminum oxide waveguides,” Opt. Mater. 21, 705–712 (2003).
    [CrossRef]
  6. M. Fuji, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
    [CrossRef]
  7. G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
    [CrossRef]
  8. D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
    [CrossRef]
  9. F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
    [CrossRef]
  10. C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
    [CrossRef]
  11. A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
    [CrossRef]
  12. E. Trave, G. Mattei, P. Mazzoldi, G. Pellegrini, and C. Scian, “Sub-nanometric metallic Au clusters as efficient Er3+ sensitizers in silica,” Appl. Phys. Lett 89, 151121 (2006).
    [CrossRef]
  13. M. Mattarelli, M. Montagna, K. Vishnubhatla, A. Chiasera, M. Ferrari, and G. C. Righini, “Mechanisms of Ag to Er energy transfer in silicate glasses: a photoluminescence study,” Phys. Rev. B 75, 125102 (2007).
    [CrossRef]
  14. M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19, 2045–2052 (2009).
    [CrossRef]
  15. C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).
  16. R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
    [CrossRef]
  17. J. Biersak and L. Haggmark, “A Monte Carlo computer program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Meth. Phys. Res. B 174, 257–269 (1980).
    [CrossRef]
  18. C. Maurizio, M. Rovezzi, F. Bardelli, H. G. Pais, and F. D’Acapito, “Setup for optimized grazing incidence x-ray absorption experiments on thin films on substrates,” Rev. Sci. Instrum. 80, 063904–1–6 (2009).
    [CrossRef] [PubMed]
  19. A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Phys. Rev. B 58, 7565–7576 (1998).
    [CrossRef]
  20. J. J. Rehr and R. C. Albers, “Theoretical approaches to x-ray absorption fine structure,” Rev. Mod. Phys. 72, 621–654 (2000).
    [CrossRef]
  21. F. d’Acapito, S. Mobilio, A. Terrasi, S. Scalese, G. Franzò, and F. Priolo, “Structure of Er-O complexes in crystalline Si,” Phys. Rev. B 69, 153310 (2004).
    [CrossRef]
  22. G. W. Arnold and P. Mazzoldi, in “Ion beam modification of insulators,”, P. Mazzoldi and G. W. Arnold, eds. (Elservier, 1987), chap. 5.
  23. E. Oliviero, M. Ruault, B. Décamps, F. Fotuna, E. Ntsoenzok, O. Kaïtasov, and S. Collin, “Synthesis of mesoporous amorphous silica by Kr and Xe ion implantation: Transmission electron microscopy study of induced nanostructures,” Micropor. Mesopor. Mater. 132, 163–173 (2010).
    [CrossRef]
  24. H. Haberland, B. von Issendorff, T. Kolar, H. Kornmeier, C. Ludewigt, and A. Risch, “Electronic and geometric structure of Arn+ and Xen+ clusters: The solvation of rare-gas ions by their parent atoms,” Phys. Rev. Lett. 67, 3290–3293 (1991).
    [CrossRef] [PubMed]
  25. A. Terrasi, G. Franzò, S. Coffa, F. Priolo, F. D’Acapito, and S. Mobilio, “Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si,” Appl. Phys. Lett. 70, 1712–1714 (1997).
    [CrossRef]
  26. N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, CRC Handbook of Chemistry and Physics (CRC Press, 2005).
  27. N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, “Thermodynamic properties of erbium mono-and disilicide at low temperatures,” Powder Metallurgy Metal Ceram. 46, 72–76 (2007).
    [CrossRef]
  28. C. Maurizio, F. Iacona, F. D’Acapito, G. Franzò, and F. Priolo, “Er site in Er-implanted Si nanoclusters embedded in SiO2,” Phys. Rev. B 74, 205428 (2006).
    [CrossRef]
  29. P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
    [CrossRef] [PubMed]
  30. C. Piamonteze, A. C. Iñiguez, L. R. Tessler, M. C. Martins Alves, and H. Tolentino, “Environment of Erbium in a-Si:H and a-SiOx:H,” Phys. Rev. Lett. 81, 4652–4655 (1998).
    [CrossRef]
  31. M. A. Marcus, D. Jacobson, A. Vredenberg, and G. Lamble, “Concentration and annealing effects on photoluminescence and local structure of Er-implanted silica,” J. Non-Cryst. Solids 195, 232–238 (1996).
    [CrossRef]
  32. J. Wan, Y. Ling, Q. Sun, and X. Wang, “Role of codopant oxygen in erbium-doped silicon,” Phys. Rev. B 58, 10415–10420 (1998).
    [CrossRef]

2010 (1)

E. Oliviero, M. Ruault, B. Décamps, F. Fotuna, E. Ntsoenzok, O. Kaïtasov, and S. Collin, “Synthesis of mesoporous amorphous silica by Kr and Xe ion implantation: Transmission electron microscopy study of induced nanostructures,” Micropor. Mesopor. Mater. 132, 163–173 (2010).
[CrossRef]

2009 (3)

C. Maurizio, M. Rovezzi, F. Bardelli, H. G. Pais, and F. D’Acapito, “Setup for optimized grazing incidence x-ray absorption experiments on thin films on substrates,” Rev. Sci. Instrum. 80, 063904–1–6 (2009).
[CrossRef] [PubMed]

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19, 2045–2052 (2009).
[CrossRef]

2007 (3)

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, “Thermodynamic properties of erbium mono-and disilicide at low temperatures,” Powder Metallurgy Metal Ceram. 46, 72–76 (2007).
[CrossRef]

M. Mattarelli, M. Montagna, K. Vishnubhatla, A. Chiasera, M. Ferrari, and G. C. Righini, “Mechanisms of Ag to Er energy transfer in silicate glasses: a photoluminescence study,” Phys. Rev. B 75, 125102 (2007).
[CrossRef]

2006 (2)

C. Maurizio, F. Iacona, F. D’Acapito, G. Franzò, and F. Priolo, “Er site in Er-implanted Si nanoclusters embedded in SiO2,” Phys. Rev. B 74, 205428 (2006).
[CrossRef]

E. Trave, G. Mattei, P. Mazzoldi, G. Pellegrini, and C. Scian, “Sub-nanometric metallic Au clusters as efficient Er3+ sensitizers in silica,” Appl. Phys. Lett 89, 151121 (2006).
[CrossRef]

2005 (1)

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

2004 (2)

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

F. d’Acapito, S. Mobilio, A. Terrasi, S. Scalese, G. Franzò, and F. Priolo, “Structure of Er-O complexes in crystalline Si,” Phys. Rev. B 69, 153310 (2004).
[CrossRef]

2003 (2)

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+-doped aluminum oxide waveguides,” Opt. Mater. 21, 705–712 (2003).
[CrossRef]

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[CrossRef]

2002 (2)

A. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26, 225–284 (2002).
[CrossRef]

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
[CrossRef]

2000 (1)

J. J. Rehr and R. C. Albers, “Theoretical approaches to x-ray absorption fine structure,” Rev. Mod. Phys. 72, 621–654 (2000).
[CrossRef]

1999 (1)

G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
[CrossRef]

1998 (3)

A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Phys. Rev. B 58, 7565–7576 (1998).
[CrossRef]

C. Piamonteze, A. C. Iñiguez, L. R. Tessler, M. C. Martins Alves, and H. Tolentino, “Environment of Erbium in a-Si:H and a-SiOx:H,” Phys. Rev. Lett. 81, 4652–4655 (1998).
[CrossRef]

J. Wan, Y. Ling, Q. Sun, and X. Wang, “Role of codopant oxygen in erbium-doped silicon,” Phys. Rev. B 58, 10415–10420 (1998).
[CrossRef]

1997 (3)

A. Terrasi, G. Franzò, S. Coffa, F. Priolo, F. D’Acapito, and S. Mobilio, “Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si,” Appl. Phys. Lett. 70, 1712–1714 (1997).
[CrossRef]

M. Fuji, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

1996 (1)

M. A. Marcus, D. Jacobson, A. Vredenberg, and G. Lamble, “Concentration and annealing effects on photoluminescence and local structure of Er-implanted silica,” J. Non-Cryst. Solids 195, 232–238 (1996).
[CrossRef]

1991 (2)

H. Haberland, B. von Issendorff, T. Kolar, H. Kornmeier, C. Ludewigt, and A. Risch, “Electronic and geometric structure of Arn+ and Xen+ clusters: The solvation of rare-gas ions by their parent atoms,” Phys. Rev. Lett. 67, 3290–3293 (1991).
[CrossRef] [PubMed]

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

1980 (1)

J. Biersak and L. Haggmark, “A Monte Carlo computer program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Meth. Phys. Res. B 174, 257–269 (1980).
[CrossRef]

1976 (1)

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976).
[CrossRef]

1954 (1)

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

Albers, R. C.

J. J. Rehr and R. C. Albers, “Theoretical approaches to x-ray absorption fine structure,” Rev. Mod. Phys. 72, 621–654 (2000).
[CrossRef]

Ankudinov, A. L.

A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Phys. Rev. B 58, 7565–7576 (1998).
[CrossRef]

Arnold, G. W.

G. W. Arnold and P. Mazzoldi, in “Ion beam modification of insulators,”, P. Mazzoldi and G. W. Arnold, eds. (Elservier, 1987), chap. 5.

Auzel, F.

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976).
[CrossRef]

Bardelli, F.

C. Maurizio, M. Rovezzi, F. Bardelli, H. G. Pais, and F. D’Acapito, “Setup for optimized grazing incidence x-ray absorption experiments on thin films on substrates,” Rev. Sci. Instrum. 80, 063904–1–6 (2009).
[CrossRef] [PubMed]

Battaglin, G.

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

Béa, H.

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

Bello, V.

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

Belloni, J.

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

Bernas, H.

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

Biersak, J.

J. Biersak and L. Haggmark, “A Monte Carlo computer program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Meth. Phys. Res. B 174, 257–269 (1980).
[CrossRef]

Borsella, E.

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Calvo, V.

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

Cesca, T.

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

Chiasera, A.

M. Mattarelli, M. Montagna, K. Vishnubhatla, A. Chiasera, M. Ferrari, and G. C. Righini, “Mechanisms of Ag to Er energy transfer in silicate glasses: a photoluminescence study,” Phys. Rev. B 75, 125102 (2007).
[CrossRef]

Coffa, S.

A. Terrasi, G. Franzò, S. Coffa, F. Priolo, F. D’Acapito, and S. Mobilio, “Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si,” Appl. Phys. Lett. 70, 1712–1714 (1997).
[CrossRef]

Collin, S.

E. Oliviero, M. Ruault, B. Décamps, F. Fotuna, E. Ntsoenzok, O. Kaïtasov, and S. Collin, “Synthesis of mesoporous amorphous silica by Kr and Xe ion implantation: Transmission electron microscopy study of induced nanostructures,” Micropor. Mesopor. Mater. 132, 163–173 (2010).
[CrossRef]

Conradson, S. D.

A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Phys. Rev. B 58, 7565–7576 (1998).
[CrossRef]

D’Acapito, F.

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

C. Maurizio, M. Rovezzi, F. Bardelli, H. G. Pais, and F. D’Acapito, “Setup for optimized grazing incidence x-ray absorption experiments on thin films on substrates,” Rev. Sci. Instrum. 80, 063904–1–6 (2009).
[CrossRef] [PubMed]

C. Maurizio, F. Iacona, F. D’Acapito, G. Franzò, and F. Priolo, “Er site in Er-implanted Si nanoclusters embedded in SiO2,” Phys. Rev. B 74, 205428 (2006).
[CrossRef]

F. d’Acapito, S. Mobilio, A. Terrasi, S. Scalese, G. Franzò, and F. Priolo, “Structure of Er-O complexes in crystalline Si,” Phys. Rev. B 69, 153310 (2004).
[CrossRef]

A. Terrasi, G. Franzò, S. Coffa, F. Priolo, F. D’Acapito, and S. Mobilio, “Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si,” Appl. Phys. Lett. 70, 1712–1714 (1997).
[CrossRef]

Dal Negro, L.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[CrossRef]

de Nuntis, M.

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Décamps, B.

E. Oliviero, M. Ruault, B. Décamps, F. Fotuna, E. Ntsoenzok, O. Kaïtasov, and S. Collin, “Synthesis of mesoporous amorphous silica by Kr and Xe ion implantation: Transmission electron microscopy study of induced nanostructures,” Micropor. Mesopor. Mater. 132, 163–173 (2010).
[CrossRef]

Delamadeleine, E.

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

Demichel, O.

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

Eichelbaum, M.

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19, 2045–2052 (2009).
[CrossRef]

Enrichi, F.

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Espiau de Lamaestre, R.

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

Falconieri, M.

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Ferrari, M.

M. Mattarelli, M. Montagna, K. Vishnubhatla, A. Chiasera, M. Ferrari, and G. C. Righini, “Mechanisms of Ag to Er energy transfer in silicate glasses: a photoluminescence study,” Phys. Rev. B 75, 125102 (2007).
[CrossRef]

Fick, J.

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Fotuna, F.

E. Oliviero, M. Ruault, B. Décamps, F. Fotuna, E. Ntsoenzok, O. Kaïtasov, and S. Collin, “Synthesis of mesoporous amorphous silica by Kr and Xe ion implantation: Transmission electron microscopy study of induced nanostructures,” Micropor. Mesopor. Mater. 132, 163–173 (2010).
[CrossRef]

Franzò, G.

C. Maurizio, F. Iacona, F. D’Acapito, G. Franzò, and F. Priolo, “Er site in Er-implanted Si nanoclusters embedded in SiO2,” Phys. Rev. B 74, 205428 (2006).
[CrossRef]

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

F. d’Acapito, S. Mobilio, A. Terrasi, S. Scalese, G. Franzò, and F. Priolo, “Structure of Er-O complexes in crystalline Si,” Phys. Rev. B 69, 153310 (2004).
[CrossRef]

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[CrossRef]

G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
[CrossRef]

A. Terrasi, G. Franzò, S. Coffa, F. Priolo, F. D’Acapito, and S. Mobilio, “Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si,” Appl. Phys. Lett. 70, 1712–1714 (1997).
[CrossRef]

Fuji, M.

M. Fuji, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[CrossRef]

Gonella, F.

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Gorbachuk, N.

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, “Thermodynamic properties of erbium mono-and disilicide at low temperatures,” Powder Metallurgy Metal Ceram. 46, 72–76 (2007).
[CrossRef]

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, CRC Handbook of Chemistry and Physics (CRC Press, 2005).

Guglielmi, M.

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Haberland, H.

H. Haberland, B. von Issendorff, T. Kolar, H. Kornmeier, C. Ludewigt, and A. Risch, “Electronic and geometric structure of Arn+ and Xen+ clusters: The solvation of rare-gas ions by their parent atoms,” Phys. Rev. Lett. 67, 3290–3293 (1991).
[CrossRef] [PubMed]

Haggmark, L.

J. Biersak and L. Haggmark, “A Monte Carlo computer program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Meth. Phys. Res. B 174, 257–269 (1980).
[CrossRef]

Hayashi, S.

M. Fuji, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[CrossRef]

Iacona, F.

C. Maurizio, F. Iacona, F. D’Acapito, G. Franzò, and F. Priolo, “Er site in Er-implanted Si nanoclusters embedded in SiO2,” Phys. Rev. B 74, 205428 (2006).
[CrossRef]

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[CrossRef]

Iñiguez, A. C.

C. Piamonteze, A. C. Iñiguez, L. R. Tessler, M. C. Martins Alves, and H. Tolentino, “Environment of Erbium in a-Si:H and a-SiOx:H,” Phys. Rev. Lett. 81, 4652–4655 (1998).
[CrossRef]

Jacobson, D.

M. A. Marcus, D. Jacobson, A. Vredenberg, and G. Lamble, “Concentration and annealing effects on photoluminescence and local structure of Er-implanted silica,” J. Non-Cryst. Solids 195, 232–238 (1996).
[CrossRef]

Jager, J.-B.

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

Kaïtasov, O.

E. Oliviero, M. Ruault, B. Décamps, F. Fotuna, E. Ntsoenzok, O. Kaïtasov, and S. Collin, “Synthesis of mesoporous amorphous silica by Kr and Xe ion implantation: Transmission electron microscopy study of induced nanostructures,” Micropor. Mesopor. Mater. 132, 163–173 (2010).
[CrossRef]

Kanzawa, Y.

M. Fuji, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[CrossRef]

Kenyon, A.

A. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26, 225–284 (2002).
[CrossRef]

Kirienko, S.

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, “Thermodynamic properties of erbium mono-and disilicide at low temperatures,” Powder Metallurgy Metal Ceram. 46, 72–76 (2007).
[CrossRef]

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, CRC Handbook of Chemistry and Physics (CRC Press, 2005).

Kolar, T.

H. Haberland, B. von Issendorff, T. Kolar, H. Kornmeier, C. Ludewigt, and A. Risch, “Electronic and geometric structure of Arn+ and Xen+ clusters: The solvation of rare-gas ions by their parent atoms,” Phys. Rev. Lett. 67, 3290–3293 (1991).
[CrossRef] [PubMed]

Kornmeier, H.

H. Haberland, B. von Issendorff, T. Kolar, H. Kornmeier, C. Ludewigt, and A. Risch, “Electronic and geometric structure of Arn+ and Xen+ clusters: The solvation of rare-gas ions by their parent atoms,” Phys. Rev. Lett. 67, 3290–3293 (1991).
[CrossRef] [PubMed]

Lamble, G.

M. A. Marcus, D. Jacobson, A. Vredenberg, and G. Lamble, “Concentration and annealing effects on photoluminescence and local structure of Er-implanted silica,” J. Non-Cryst. Solids 195, 232–238 (1996).
[CrossRef]

Ling, Y.

J. Wan, Y. Ling, Q. Sun, and X. Wang, “Role of codopant oxygen in erbium-doped silicon,” Phys. Rev. B 58, 10415–10420 (1998).
[CrossRef]

Ludewigt, C.

H. Haberland, B. von Issendorff, T. Kolar, H. Kornmeier, C. Ludewigt, and A. Risch, “Electronic and geometric structure of Arn+ and Xen+ clusters: The solvation of rare-gas ions by their parent atoms,” Phys. Rev. Lett. 67, 3290–3293 (1991).
[CrossRef] [PubMed]

Marcus, M. A.

M. A. Marcus, D. Jacobson, A. Vredenberg, and G. Lamble, “Concentration and annealing effects on photoluminescence and local structure of Er-implanted silica,” J. Non-Cryst. Solids 195, 232–238 (1996).
[CrossRef]

Marignier, J. L.

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

Martins Alves, M. C.

C. Piamonteze, A. C. Iñiguez, L. R. Tessler, M. C. Martins Alves, and H. Tolentino, “Environment of Erbium in a-Si:H and a-SiOx:H,” Phys. Rev. Lett. 81, 4652–4655 (1998).
[CrossRef]

Martucci, A.

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Mattarelli, M.

M. Mattarelli, M. Montagna, K. Vishnubhatla, A. Chiasera, M. Ferrari, and G. C. Righini, “Mechanisms of Ag to Er energy transfer in silicate glasses: a photoluminescence study,” Phys. Rev. B 75, 125102 (2007).
[CrossRef]

Mattei, G.

E. Trave, G. Mattei, P. Mazzoldi, G. Pellegrini, and C. Scian, “Sub-nanometric metallic Au clusters as efficient Er3+ sensitizers in silica,” Appl. Phys. Lett 89, 151121 (2006).
[CrossRef]

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

Maurizio, C.

C. Maurizio, M. Rovezzi, F. Bardelli, H. G. Pais, and F. D’Acapito, “Setup for optimized grazing incidence x-ray absorption experiments on thin films on substrates,” Rev. Sci. Instrum. 80, 063904–1–6 (2009).
[CrossRef] [PubMed]

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

C. Maurizio, F. Iacona, F. D’Acapito, G. Franzò, and F. Priolo, “Er site in Er-implanted Si nanoclusters embedded in SiO2,” Phys. Rev. B 74, 205428 (2006).
[CrossRef]

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

Mazzoldi, P.

E. Trave, G. Mattei, P. Mazzoldi, G. Pellegrini, and C. Scian, “Sub-nanometric metallic Au clusters as efficient Er3+ sensitizers in silica,” Appl. Phys. Lett 89, 151121 (2006).
[CrossRef]

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

G. W. Arnold and P. Mazzoldi, in “Ion beam modification of insulators,”, P. Mazzoldi and G. W. Arnold, eds. (Elservier, 1987), chap. 5.

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

Mobilio, S.

F. d’Acapito, S. Mobilio, A. Terrasi, S. Scalese, G. Franzò, and F. Priolo, “Structure of Er-O complexes in crystalline Si,” Phys. Rev. B 69, 153310 (2004).
[CrossRef]

A. Terrasi, G. Franzò, S. Coffa, F. Priolo, F. D’Acapito, and S. Mobilio, “Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si,” Appl. Phys. Lett. 70, 1712–1714 (1997).
[CrossRef]

Montagna, M.

M. Mattarelli, M. Montagna, K. Vishnubhatla, A. Chiasera, M. Ferrari, and G. C. Righini, “Mechanisms of Ag to Er energy transfer in silicate glasses: a photoluminescence study,” Phys. Rev. B 75, 125102 (2007).
[CrossRef]

Noé, P.

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

Ntsoenzok, E.

E. Oliviero, M. Ruault, B. Décamps, F. Fotuna, E. Ntsoenzok, O. Kaïtasov, and S. Collin, “Synthesis of mesoporous amorphous silica by Kr and Xe ion implantation: Transmission electron microscopy study of induced nanostructures,” Micropor. Mesopor. Mater. 132, 163–173 (2010).
[CrossRef]

Obushenko, I.

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, “Thermodynamic properties of erbium mono-and disilicide at low temperatures,” Powder Metallurgy Metal Ceram. 46, 72–76 (2007).
[CrossRef]

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, CRC Handbook of Chemistry and Physics (CRC Press, 2005).

Okuno, H.

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

Oliviero, E.

E. Oliviero, M. Ruault, B. Décamps, F. Fotuna, E. Ntsoenzok, O. Kaïtasov, and S. Collin, “Synthesis of mesoporous amorphous silica by Kr and Xe ion implantation: Transmission electron microscopy study of induced nanostructures,” Micropor. Mesopor. Mater. 132, 163–173 (2010).
[CrossRef]

Pacifici, D.

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[CrossRef]

Padovani, S.

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Pais, H. G.

C. Maurizio, M. Rovezzi, F. Bardelli, H. G. Pais, and F. D’Acapito, “Setup for optimized grazing incidence x-ray absorption experiments on thin films on substrates,” Rev. Sci. Instrum. 80, 063904–1–6 (2009).
[CrossRef] [PubMed]

Pasqualini, D.

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

Patrini, M.

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Pellegrini, G.

E. Trave, G. Mattei, P. Mazzoldi, G. Pellegrini, and C. Scian, “Sub-nanometric metallic Au clusters as efficient Er3+ sensitizers in silica,” Appl. Phys. Lett 89, 151121 (2006).
[CrossRef]

Perotto, G.

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

Piamonteze, C.

C. Piamonteze, A. C. Iñiguez, L. R. Tessler, M. C. Martins Alves, and H. Tolentino, “Environment of Erbium in a-Si:H and a-SiOx:H,” Phys. Rev. Lett. 81, 4652–4655 (1998).
[CrossRef]

Polman, A.

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+-doped aluminum oxide waveguides,” Opt. Mater. 21, 705–712 (2003).
[CrossRef]

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

Prassas, M.

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

Priolo, F.

C. Maurizio, F. Iacona, F. D’Acapito, G. Franzò, and F. Priolo, “Er site in Er-implanted Si nanoclusters embedded in SiO2,” Phys. Rev. B 74, 205428 (2006).
[CrossRef]

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

F. d’Acapito, S. Mobilio, A. Terrasi, S. Scalese, G. Franzò, and F. Priolo, “Structure of Er-O complexes in crystalline Si,” Phys. Rev. B 69, 153310 (2004).
[CrossRef]

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[CrossRef]

G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
[CrossRef]

A. Terrasi, G. Franzò, S. Coffa, F. Priolo, F. D’Acapito, and S. Mobilio, “Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si,” Appl. Phys. Lett. 70, 1712–1714 (1997).
[CrossRef]

Rademann, K.

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19, 2045–2052 (2009).
[CrossRef]

Ravel, B.

A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Phys. Rev. B 58, 7565–7576 (1998).
[CrossRef]

Rehr, J. J.

J. J. Rehr and R. C. Albers, “Theoretical approaches to x-ray absorption fine structure,” Rev. Mod. Phys. 72, 621–654 (2000).
[CrossRef]

A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Phys. Rev. B 58, 7565–7576 (1998).
[CrossRef]

Ribaudo, A.

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Righini, G. C.

M. Mattarelli, M. Montagna, K. Vishnubhatla, A. Chiasera, M. Ferrari, and G. C. Righini, “Mechanisms of Ag to Er energy transfer in silicate glasses: a photoluminescence study,” Phys. Rev. B 75, 125102 (2007).
[CrossRef]

Risch, A.

H. Haberland, B. von Issendorff, T. Kolar, H. Kornmeier, C. Ludewigt, and A. Risch, “Electronic and geometric structure of Arn+ and Xen+ clusters: The solvation of rare-gas ions by their parent atoms,” Phys. Rev. Lett. 67, 3290–3293 (1991).
[CrossRef] [PubMed]

Rouviere, J.-L.

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

Rovezzi, M.

C. Maurizio, M. Rovezzi, F. Bardelli, H. G. Pais, and F. D’Acapito, “Setup for optimized grazing incidence x-ray absorption experiments on thin films on substrates,” Rev. Sci. Instrum. 80, 063904–1–6 (2009).
[CrossRef] [PubMed]

Ruault, M.

E. Oliviero, M. Ruault, B. Décamps, F. Fotuna, E. Ntsoenzok, O. Kaïtasov, and S. Collin, “Synthesis of mesoporous amorphous silica by Kr and Xe ion implantation: Transmission electron microscopy study of induced nanostructures,” Micropor. Mesopor. Mater. 132, 163–173 (2010).
[CrossRef]

Sada, C.

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

Scalese, S.

F. d’Acapito, S. Mobilio, A. Terrasi, S. Scalese, G. Franzò, and F. Priolo, “Structure of Er-O complexes in crystalline Si,” Phys. Rev. B 69, 153310 (2004).
[CrossRef]

Scian, C.

E. Trave, G. Mattei, P. Mazzoldi, G. Pellegrini, and C. Scian, “Sub-nanometric metallic Au clusters as efficient Er3+ sensitizers in silica,” Appl. Phys. Lett 89, 151121 (2006).
[CrossRef]

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

Sidorko, V.

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, “Thermodynamic properties of erbium mono-and disilicide at low temperatures,” Powder Metallurgy Metal Ceram. 46, 72–76 (2007).
[CrossRef]

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, CRC Handbook of Chemistry and Physics (CRC Press, 2005).

Strohhöfer, C.

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+-doped aluminum oxide waveguides,” Opt. Mater. 21, 705–712 (2003).
[CrossRef]

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
[CrossRef]

Sun, Q.

J. Wan, Y. Ling, Q. Sun, and X. Wang, “Role of codopant oxygen in erbium-doped silicon,” Phys. Rev. B 58, 10415–10420 (1998).
[CrossRef]

Terrasi, A.

F. d’Acapito, S. Mobilio, A. Terrasi, S. Scalese, G. Franzò, and F. Priolo, “Structure of Er-O complexes in crystalline Si,” Phys. Rev. B 69, 153310 (2004).
[CrossRef]

A. Terrasi, G. Franzò, S. Coffa, F. Priolo, F. D’Acapito, and S. Mobilio, “Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si,” Appl. Phys. Lett. 70, 1712–1714 (1997).
[CrossRef]

Tessler, L. R.

C. Piamonteze, A. C. Iñiguez, L. R. Tessler, M. C. Martins Alves, and H. Tolentino, “Environment of Erbium in a-Si:H and a-SiOx:H,” Phys. Rev. Lett. 81, 4652–4655 (1998).
[CrossRef]

Tolentino, H.

C. Piamonteze, A. C. Iñiguez, L. R. Tessler, M. C. Martins Alves, and H. Tolentino, “Environment of Erbium in a-Si:H and a-SiOx:H,” Phys. Rev. Lett. 81, 4652–4655 (1998).
[CrossRef]

Trave, E.

E. Trave, G. Mattei, P. Mazzoldi, G. Pellegrini, and C. Scian, “Sub-nanometric metallic Au clusters as efficient Er3+ sensitizers in silica,” Appl. Phys. Lett 89, 151121 (2006).
[CrossRef]

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

Vinciguerra, V.

G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
[CrossRef]

Vishnubhatla, K.

M. Mattarelli, M. Montagna, K. Vishnubhatla, A. Chiasera, M. Ferrari, and G. C. Righini, “Mechanisms of Ag to Er energy transfer in silicate glasses: a photoluminescence study,” Phys. Rev. B 75, 125102 (2007).
[CrossRef]

von Issendorff, B.

H. Haberland, B. von Issendorff, T. Kolar, H. Kornmeier, C. Ludewigt, and A. Risch, “Electronic and geometric structure of Arn+ and Xen+ clusters: The solvation of rare-gas ions by their parent atoms,” Phys. Rev. Lett. 67, 3290–3293 (1991).
[CrossRef] [PubMed]

Vredenberg, A.

M. A. Marcus, D. Jacobson, A. Vredenberg, and G. Lamble, “Concentration and annealing effects on photoluminescence and local structure of Er-implanted silica,” J. Non-Cryst. Solids 195, 232–238 (1996).
[CrossRef]

Wan, J.

J. Wan, Y. Ling, Q. Sun, and X. Wang, “Role of codopant oxygen in erbium-doped silicon,” Phys. Rev. B 58, 10415–10420 (1998).
[CrossRef]

Wang, X.

J. Wan, Y. Ling, Q. Sun, and X. Wang, “Role of codopant oxygen in erbium-doped silicon,” Phys. Rev. B 58, 10415–10420 (1998).
[CrossRef]

Yamamoto, K.

M. Fuji, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[CrossRef]

Yoshida, M.

M. Fuji, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[CrossRef]

Adv. Funct. Mater. (1)

M. Eichelbaum and K. Rademann, “Plasmonic enhancement or energy transfer? on the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices,” Adv. Funct. Mater. 19, 2045–2052 (2009).
[CrossRef]

Appl. Phys. A (2)

A. Martucci, M. de Nuntis, A. Ribaudo, M. Guglielmi, S. Padovani, F. Enrichi, G. Mattei, P. Mazzoldi, C. Sada, E. Trave, G. Battaglin, F. Gonella, E. Borsella, M. Falconieri, M. Patrini, and J. Fick, “Silver sensitized erbium doped ion exchanged sol gel waveguides,” Appl. Phys. A 80, 557–563 (2004).
[CrossRef]

G. Franzò, V. Vinciguerra, and F. Priolo, “The excitation mechanism of rare-earth ions in silicon nanocrystals,” Appl. Phys. A 69, 3–12 (1999).
[CrossRef]

Appl. Phys. Lett (1)

E. Trave, G. Mattei, P. Mazzoldi, G. Pellegrini, and C. Scian, “Sub-nanometric metallic Au clusters as efficient Er3+ sensitizers in silica,” Appl. Phys. Lett 89, 151121 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

C. Strohhöfer and A. Polman, “Silver as a sensitizer for erbium,” Appl. Phys. Lett. 81, 1414–1416 (2002).
[CrossRef]

M. Fuji, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54-μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett. 71, 1198–1200 (1997).
[CrossRef]

A. Terrasi, G. Franzò, S. Coffa, F. Priolo, F. D’Acapito, and S. Mobilio, “Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si,” Appl. Phys. Lett. 70, 1712–1714 (1997).
[CrossRef]

J. Appl. Phys. (1)

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

J. Lightwave Technol. (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234–250 (1991).
[CrossRef]

J. Non-Cryst. Solids (1)

M. A. Marcus, D. Jacobson, A. Vredenberg, and G. Lamble, “Concentration and annealing effects on photoluminescence and local structure of Er-implanted silica,” J. Non-Cryst. Solids 195, 232–238 (1996).
[CrossRef]

Micropor. Mesopor. Mater. (1)

E. Oliviero, M. Ruault, B. Décamps, F. Fotuna, E. Ntsoenzok, O. Kaïtasov, and S. Collin, “Synthesis of mesoporous amorphous silica by Kr and Xe ion implantation: Transmission electron microscopy study of induced nanostructures,” Micropor. Mesopor. Mater. 132, 163–173 (2010).
[CrossRef]

Nanotechnology (1)

P. Noé, H. Okuno, J.-B. Jager, E. Delamadeleine, O. Demichel, J.-L. Rouviere, V. Calvo, C. Maurizio, and F. D’Acapito, “The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films,” Nanotechnology 20, 355704 (2009).
[CrossRef] [PubMed]

Nucl. Instrum. Meth. Phys. Res. B (1)

J. Biersak and L. Haggmark, “A Monte Carlo computer program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Meth. Phys. Res. B 174, 257–269 (1980).
[CrossRef]

Opt. Mater. (2)

F. Enrichi, G. Mattei, C. Sada, E. Trave, D. Pacifici, G. Franzò, F. Priolo, F. Iacona, M. Prassas, M. Falconieri, and E. Borsella, “Study of the energy transfer mechanism in different glasses co-doped with Si nanoaggregates and Er3+ ions,” Opt. Mater. 27, 904–909 (2005).
[CrossRef]

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+-doped aluminum oxide waveguides,” Opt. Mater. 21, 705–712 (2003).
[CrossRef]

Phys. Rev. B (9)

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003).
[CrossRef]

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976).
[CrossRef]

M. Mattarelli, M. Montagna, K. Vishnubhatla, A. Chiasera, M. Ferrari, and G. C. Righini, “Mechanisms of Ag to Er energy transfer in silicate glasses: a photoluminescence study,” Phys. Rev. B 75, 125102 (2007).
[CrossRef]

C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, and G. Mattei, “Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates,” Phys. Rev. B 83, 195430 (2011).

R. Espiau de Lamaestre, H. Béa, H. Bernas, J. Belloni, and J. L. Marignier, “Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography,” Phys. Rev. B 76, 205431 (2007).
[CrossRef]

C. Maurizio, F. Iacona, F. D’Acapito, G. Franzò, and F. Priolo, “Er site in Er-implanted Si nanoclusters embedded in SiO2,” Phys. Rev. B 74, 205428 (2006).
[CrossRef]

J. Wan, Y. Ling, Q. Sun, and X. Wang, “Role of codopant oxygen in erbium-doped silicon,” Phys. Rev. B 58, 10415–10420 (1998).
[CrossRef]

A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Phys. Rev. B 58, 7565–7576 (1998).
[CrossRef]

F. d’Acapito, S. Mobilio, A. Terrasi, S. Scalese, G. Franzò, and F. Priolo, “Structure of Er-O complexes in crystalline Si,” Phys. Rev. B 69, 153310 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

H. Haberland, B. von Issendorff, T. Kolar, H. Kornmeier, C. Ludewigt, and A. Risch, “Electronic and geometric structure of Arn+ and Xen+ clusters: The solvation of rare-gas ions by their parent atoms,” Phys. Rev. Lett. 67, 3290–3293 (1991).
[CrossRef] [PubMed]

C. Piamonteze, A. C. Iñiguez, L. R. Tessler, M. C. Martins Alves, and H. Tolentino, “Environment of Erbium in a-Si:H and a-SiOx:H,” Phys. Rev. Lett. 81, 4652–4655 (1998).
[CrossRef]

Powder Metallurgy Metal Ceram. (1)

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, “Thermodynamic properties of erbium mono-and disilicide at low temperatures,” Powder Metallurgy Metal Ceram. 46, 72–76 (2007).
[CrossRef]

Prog. Quantum Electron. (1)

A. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron. 26, 225–284 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

J. J. Rehr and R. C. Albers, “Theoretical approaches to x-ray absorption fine structure,” Rev. Mod. Phys. 72, 621–654 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

C. Maurizio, M. Rovezzi, F. Bardelli, H. G. Pais, and F. D’Acapito, “Setup for optimized grazing incidence x-ray absorption experiments on thin films on substrates,” Rev. Sci. Instrum. 80, 063904–1–6 (2009).
[CrossRef] [PubMed]

Other (2)

G. W. Arnold and P. Mazzoldi, in “Ion beam modification of insulators,”, P. Mazzoldi and G. W. Arnold, eds. (Elservier, 1987), chap. 5.

N. Gorbachuk, S. Kirienko, V. Sidorko, and I. Obushenko, CRC Handbook of Chemistry and Physics (CRC Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

PL intensity as a function of annealing temperature for the Er-implanted (white triangles) and the Er+Xe co-implanted samples (black squares for the Er/Xe LD and half-black circles for the HD samples, respectively). The measurements have been performed with resonant excitation at 488 nm. The inset shows the corresponding emission lifetimes. The legend is the same as for the PL intensity.

Fig. 2
Fig. 2

Comparison of the temperature evolution of the PL intensity for the Er/Xe HD and Er/Au HD co-implanted samples under resonant excitation.

Fig. 3
Fig. 3

(a) in-resonance (488 nm) and out-of-resonance (476.5 nm) Er3+ PL emission spectra around 1540 nm of the Er/Xe HD and LD samples annealed at 800 °C; (b) cross-sectional HAADF-STEM image of the Er/Xe HD sample annealed at 800 °C; (c) BF-TEM cross section of the Er/Au HD sample annealed at 800°C; (d) comparison of the optical absorption spectra of the samples annealed at 800°C.

Fig. 4
Fig. 4

(a) EXAFS spectra of the Er/Xe HD co-implanted samples, compared to the spectrum of an Er-implanted silica annealed at 800 °C; (b) k2-weighted Fourier transform (in the range k=2–8 Å−1) moduli (markers) and fits (solid line) of the spectra in (a); in (a,b) the annealing temperature is reported. (c,d) Fourier-filtered (in the range R=1–4 Å) signal (markers) superimposed to the best fit curve (solid line) for the as-implanted (c) and 800 °C-annealed samples (d); the signals that contribute to the fit are also reported (O in the first shell + Si in the second one and Si in the first shell + O in the second one).

Fig. 5
Fig. 5

First shell coordination number for the Er–OI and Er–SiI components as a function of the annealing temperature in the sample Er/Xe HD (left axis). On the right axis, the evolution of the Er/Xe HD photoluminescence intensity IPL.

Tables (1)

Tables Icon

Table 1 Results of the EXAFS analysis for the first shell for Er and Er/Xe HD samples; N is the coordination number, R the interatomic distance. The Debye Waller factor σ2 has been set to (13 ± 2) ×10−3Å2 for all the samples and for both O- and Si-coordination, as estimated by the first shell fitting of the spectra from the 800 °C-annealed samples

Metrics