Abstract

We demonstrate the use of three-dimensional funnel index of refraction patterns analogous to those of retinal Müller cells as support for tunable and multi-functional volume optical component miniaturization and integration. Our experiments in paraelectric photorefractive crystals show how a single funnel can act both as a waveguide and a tunable focusing/defocusing micro-lens. Pairing multiple funnel patterns, we are also able to demonstrate ultra-compact tunable beam-splitting, with distinct guided output modes in under 1mm of propagation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
    [CrossRef] [PubMed]
  2. A. M. Labin and E. N. Ribak, “Retinal glial cells Enhance human vision acuity,” Phys. Rev. Lett. 104, 158102 (2010).
    [CrossRef] [PubMed]
  3. E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
    [CrossRef]
  4. A. Pierangelo, E. DelRe, A. Ciattoni, E. Palange, A. J. Agranat, and B. Crosignani, “Linear writing of waveguides in bulk photorefractive crystals through a two-step polarization sequence,” J. Opt. A. Pure Appl. Opt. 10, 064005 (2008).
    [CrossRef]
  5. A. Pierangelo, A. Ciattoni, E. Palange, A. J. Agranat, and E. DelRe, “Electro-activation and electro-morphing of photorefractive funnel waveguides,” Opt. Express 17, 22659–22665 (2009).
    [CrossRef]
  6. N. J. Cerf, C. Adami, and P. G. Kwait, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477–R1480 (1998).
    [CrossRef]
  7. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
    [CrossRef] [PubMed]
  8. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
    [CrossRef] [PubMed]
  9. Y. Frauel and B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478–1480 (2001).
    [CrossRef]
  10. R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3, 362–364 (2009).
    [CrossRef]
  11. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
    [CrossRef] [PubMed]
  12. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).
  13. K. Miura, J. Qiu, H. Inouye, and T. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
    [CrossRef]
  14. W. Torruellas and S. Trillo (eds.), Spatial Solitons, (Springer, New York, 2001).
  15. T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
    [CrossRef]
  16. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
    [CrossRef] [PubMed]
  17. K. Dorkenoo, O. Cregut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
    [CrossRef]
  18. M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
    [CrossRef] [PubMed]
  19. E. DelRe, M. Tamburrini, and A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett. 25, 963–965 (2000).
    [CrossRef]
  20. E. DelRe, B. Crosignani, E. Palange, and A. J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett. 27, 2188–2190 (2002).
    [CrossRef]
  21. M. Asaro, M. Sheldon, Z. G. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett. 30, 519–521 (2005).
    [CrossRef] [PubMed]
  22. M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys. 99, 113107–113112 (2006).
    [CrossRef]
  23. M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21, 794–796 (1996).
    [CrossRef] [PubMed]
  24. C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91, 263903–263906 (2003).
    [CrossRef]
  25. E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23, 2323–2327 (2006).
    [CrossRef]
  26. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988).
  27. A. Agranat, R. Hofmeister, and A. Yariv, “Characterization of a new photorefractive material: Kl-yLyT1-xNx,” Opt. Lett. 17, 713–715 (1992).
    [CrossRef] [PubMed]
  28. W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
    [CrossRef]
  29. E. DelRe, A. Ciattoni, and A. J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett. 26, 908–910 (2001).
    [CrossRef]
  30. E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499–5501 (2004).
    [CrossRef]

2011 (1)

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[CrossRef] [PubMed]

2010 (2)

A. M. Labin and E. N. Ribak, “Retinal glial cells Enhance human vision acuity,” Phys. Rev. Lett. 104, 158102 (2010).
[CrossRef] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

A. Pierangelo, E. DelRe, A. Ciattoni, E. Palange, A. J. Agranat, and B. Crosignani, “Linear writing of waveguides in bulk photorefractive crystals through a two-step polarization sequence,” J. Opt. A. Pure Appl. Opt. 10, 064005 (2008).
[CrossRef]

2007 (2)

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[CrossRef]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys. 99, 113107–113112 (2006).
[CrossRef]

E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23, 2323–2327 (2006).
[CrossRef]

2005 (1)

2004 (1)

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499–5501 (2004).
[CrossRef]

2003 (1)

C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91, 263903–263906 (2003).
[CrossRef]

2002 (2)

2001 (2)

2000 (1)

1998 (2)

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

N. J. Cerf, C. Adami, and P. G. Kwait, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477–R1480 (1998).
[CrossRef]

1997 (1)

K. Miura, J. Qiu, H. Inouye, and T. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

1996 (2)

1995 (2)

T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[CrossRef]

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[CrossRef] [PubMed]

1992 (1)

Adami, C.

N. J. Cerf, C. Adami, and P. G. Kwait, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477–R1480 (1998).
[CrossRef]

Agranat, A.

Agranat, A. J.

Arbore, M. A.

Asaro, M.

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Bongioanni, I.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[CrossRef] [PubMed]

Carre, C.

Cerf, N. J.

N. J. Cerf, C. Adami, and P. G. Kwait, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477–R1480 (1998).
[CrossRef]

Chauvet, M.

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys. 99, 113107–113112 (2006).
[CrossRef]

Chen, Z. G.

Chou, M. H.

Ciattoni, A.

A. Pierangelo, A. Ciattoni, E. Palange, A. J. Agranat, and E. DelRe, “Electro-activation and electro-morphing of photorefractive funnel waveguides,” Opt. Express 17, 22659–22665 (2009).
[CrossRef]

A. Pierangelo, E. DelRe, A. Ciattoni, E. Palange, A. J. Agranat, and B. Crosignani, “Linear writing of waveguides in bulk photorefractive crystals through a two-step polarization sequence,” J. Opt. A. Pure Appl. Opt. 10, 064005 (2008).
[CrossRef]

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[CrossRef]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499–5501 (2004).
[CrossRef]

E. DelRe, A. Ciattoni, and A. J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett. 26, 908–910 (2001).
[CrossRef]

Cregut, O.

Crespi, A.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[CrossRef] [PubMed]

Crosignani, B.

A. Pierangelo, E. DelRe, A. Ciattoni, E. Palange, A. J. Agranat, and B. Crosignani, “Linear writing of waveguides in bulk photorefractive crystals through a two-step polarization sequence,” J. Opt. A. Pure Appl. Opt. 10, 064005 (2008).
[CrossRef]

E. DelRe, B. Crosignani, E. Palange, and A. J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett. 27, 2188–2190 (2002).
[CrossRef]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Dari-Salisburgo, C.

C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91, 263903–263906 (2003).
[CrossRef]

De Masi, G.

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499–5501 (2004).
[CrossRef]

De Sterke, C. M.

T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[CrossRef]

DelRe, E.

A. Pierangelo, A. Ciattoni, E. Palange, A. J. Agranat, and E. DelRe, “Electro-activation and electro-morphing of photorefractive funnel waveguides,” Opt. Express 17, 22659–22665 (2009).
[CrossRef]

A. Pierangelo, E. DelRe, A. Ciattoni, E. Palange, A. J. Agranat, and B. Crosignani, “Linear writing of waveguides in bulk photorefractive crystals through a two-step polarization sequence,” J. Opt. A. Pure Appl. Opt. 10, 064005 (2008).
[CrossRef]

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[CrossRef]

E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23, 2323–2327 (2006).
[CrossRef]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499–5501 (2004).
[CrossRef]

C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91, 263903–263906 (2003).
[CrossRef]

E. DelRe, B. Crosignani, E. Palange, and A. J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett. 27, 2188–2190 (2002).
[CrossRef]

E. DelRe, A. Ciattoni, and A. J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett. 26, 908–910 (2001).
[CrossRef]

E. DelRe, M. Tamburrini, and A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett. 25, 963–965 (2000).
[CrossRef]

Denz, C.

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

Dorkenoo, K.

Duree, G.

Fejer, M. M.

Fink, M.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Foja, C.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Fort, A.

Franze, K.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Frauel, Y.

Fu, G. Y.

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys. 99, 113107–113112 (2006).
[CrossRef]

Gigan, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Gillot, F.

Gou, A. Q.

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys. 99, 113107–113112 (2006).
[CrossRef]

Grosche, J.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Guck, J.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3, 362–364 (2009).
[CrossRef]

Heintzmann, R.

R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3, 362–364 (2009).
[CrossRef]

Hirao, T.

K. Miura, J. Qiu, H. Inouye, and T. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Hofmeister, R.

Inouye, H.

K. Miura, J. Qiu, H. Inouye, and T. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Javidi, B.

Kewitsch, S.

Krolikowski, W.

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

Kwait, P. G.

N. J. Cerf, C. Adami, and P. G. Kwait, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477–R1480 (1998).
[CrossRef]

Labin, A. M.

A. M. Labin and E. N. Ribak, “Retinal glial cells Enhance human vision acuity,” Phys. Rev. Lett. 104, 158102 (2010).
[CrossRef] [PubMed]

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Luther-Davies, B.

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

Mager, L.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).

Mataloni, P.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[CrossRef] [PubMed]

Miura, K.

K. Miura, J. Qiu, H. Inouye, and T. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Moerner, W. E.

Monro, T. M.

T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[CrossRef]

Morin, M.

O’Brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Osellame, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[CrossRef] [PubMed]

Ostroverkhova, O.

Palange, E.

A. Pierangelo, A. Ciattoni, E. Palange, A. J. Agranat, and E. DelRe, “Electro-activation and electro-morphing of photorefractive funnel waveguides,” Opt. Express 17, 22659–22665 (2009).
[CrossRef]

A. Pierangelo, E. DelRe, A. Ciattoni, E. Palange, A. J. Agranat, and B. Crosignani, “Linear writing of waveguides in bulk photorefractive crystals through a two-step polarization sequence,” J. Opt. A. Pure Appl. Opt. 10, 064005 (2008).
[CrossRef]

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[CrossRef]

E. DelRe and E. Palange, “Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons,” J. Opt. Soc. Am. B 23, 2323–2327 (2006).
[CrossRef]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499–5501 (2004).
[CrossRef]

C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91, 263903–263906 (2003).
[CrossRef]

E. DelRe, B. Crosignani, E. Palange, and A. J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett. 27, 2188–2190 (2002).
[CrossRef]

Pierangelo, A.

A. Pierangelo, A. Ciattoni, E. Palange, A. J. Agranat, and E. DelRe, “Electro-activation and electro-morphing of photorefractive funnel waveguides,” Opt. Express 17, 22659–22665 (2009).
[CrossRef]

A. Pierangelo, E. DelRe, A. Ciattoni, E. Palange, A. J. Agranat, and B. Crosignani, “Linear writing of waveguides in bulk photorefractive crystals through a two-step polarization sequence,” J. Opt. A. Pure Appl. Opt. 10, 064005 (2008).
[CrossRef]

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[CrossRef]

Poladian, L.

T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[CrossRef]

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Qiu, J.

K. Miura, J. Qiu, H. Inouye, and T. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Ramponi, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[CrossRef] [PubMed]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Reichenbach, A.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Ribak, E. N.

A. M. Labin and E. N. Ribak, “Retinal glial cells Enhance human vision acuity,” Phys. Rev. Lett. 104, 158102 (2010).
[CrossRef] [PubMed]

Saffman, M.

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

Salamo, G.

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys. 99, 113107–113112 (2006).
[CrossRef]

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[CrossRef] [PubMed]

Sansoni, L.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[CrossRef] [PubMed]

Schild, D.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Schinkinger, S.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Sciarrino, F.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[CrossRef] [PubMed]

Segev, M.

Sheldon, M.

Skatchkov, S. N.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Tamburrini, M.

Torruellas, W.

W. Torruellas and S. Trillo (eds.), Spatial Solitons, (Springer, New York, 2001).

Travis, K.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Trillo, S.

W. Torruellas and S. Trillo (eds.), Spatial Solitons, (Springer, New York, 2001).

Uckermann, O.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Vallone, G.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[CrossRef] [PubMed]

Yariv, A.

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

E. DelRe, A. Pierangelo, E. Palange, A. Ciattoni, and A. J. Agranat, “Beam shaping and effective guiding in the bulk of photorefractive crystals through linear beam dynamics,” Appl. Phys. Lett. 91, 081105 (2007).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, and T. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl. Phys. Lett. 85, 5499–5501 (2004).
[CrossRef]

J. Appl. Phys. (1)

M. Chauvet, A. Q. Gou, G. Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys. 99, 113107–113112 (2006).
[CrossRef]

J. Opt. A. Pure Appl. Opt. (1)

A. Pierangelo, E. DelRe, A. Ciattoni, E. Palange, A. J. Agranat, and B. Crosignani, “Linear writing of waveguides in bulk photorefractive crystals through a two-step polarization sequence,” J. Opt. A. Pure Appl. Opt. 10, 064005 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Commun. (2)

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[CrossRef] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics 3, 362–364 (2009).
[CrossRef]

Opt. Commun. (1)

T. M. Monro, C. M. De Sterke, and L. Poladian, “Self-writing a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (10)

A. Agranat, R. Hofmeister, and A. Yariv, “Characterization of a new photorefractive material: Kl-yLyT1-xNx,” Opt. Lett. 17, 713–715 (1992).
[CrossRef] [PubMed]

M. Morin, G. Duree, G. Salamo, and M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995).
[CrossRef] [PubMed]

S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996).
[CrossRef] [PubMed]

M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21, 794–796 (1996).
[CrossRef] [PubMed]

E. DelRe, M. Tamburrini, and A. J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt. Lett. 25, 963–965 (2000).
[CrossRef]

E. DelRe, A. Ciattoni, and A. J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett. 26, 908–910 (2001).
[CrossRef]

Y. Frauel and B. Javidi, “Neural network for three-dimensional object recognition based on digital holography,” Opt. Lett. 26, 1478–1480 (2001).
[CrossRef]

K. Dorkenoo, O. Cregut, L. Mager, F. Gillot, C. Carre, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002).
[CrossRef]

E. DelRe, B. Crosignani, E. Palange, and A. J. Agranat, “Electro-optic beam manipulation through photorefractive needles,” Opt. Lett. 27, 2188–2190 (2002).
[CrossRef]

M. Asaro, M. Sheldon, Z. G. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett. 30, 519–521 (2005).
[CrossRef] [PubMed]

Phys. Rev. A (1)

N. J. Cerf, C. Adami, and P. G. Kwait, “Optical simulation of quantum logic,” Phys. Rev. A 57, R1477–R1480 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

A. M. Labin and E. N. Ribak, “Retinal glial cells Enhance human vision acuity,” Phys. Rev. Lett. 104, 158102 (2010).
[CrossRef] [PubMed]

W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998).
[CrossRef]

C. Dari-Salisburgo, E. DelRe, and E. Palange, “Molding and stretched evolution of optical solitons in cumulative nonlinearities,” Phys. Rev. Lett. 91, 263903–263906 (2003).
[CrossRef]

Proc. Nat. Acad. Sci. USA (1)

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Muller cells are living optical fibers in the vertebrate retina,” Proc. Nat. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef] [PubMed]

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Other (3)

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).

W. Torruellas and S. Trillo (eds.), Spatial Solitons, (Springer, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Funnel patterns and distributed lensing. (a) Schematic of funnel support. Inset shows the experimental geometry, with the direction of the applied electric field E0 with respect to the photorefractive crystal (PRχ) (b) Different distributed lensing patterns for various values of a (the focal length of the lensing effect at a given position z along the double-funnel is f ∝ 1/H(z)). Blue curves are for the unsaturated cases (a < 1) and red for the saturated cases (a > 1).

Fig. 2
Fig. 2

Electro-morphing. (a) Different distributed lensing patterns for various values of E0/E0 and a = 2.0 (the focal length of the lensing effect at a given position z along the double-funnel is f ∝ 1/H′(z)); (b) for a = 3.5. Note the transition from a positive to a negative distributed lensing effect.

Fig. 3
Fig. 3

Lensing and waveguiding using funnels. Results of readout with E0/E0 = 1 for a beam propagating in along the z-axis for different exposure times, for zc = Lz/2. First image starting from left is the input intensity distribution, whereas the others that follow are of the output intensity distribution.

Fig. 4
Fig. 4

Electro-morphing into a defocusing pattern for E0/E0 = −1 at various values of a. The images report the output intensity distribution during readout. The a = 0 condition is identical to that reported in the previous Fig. (3).

Fig. 5
Fig. 5

Ultra-compact beam splitting through two parallel funnel patterns for a = 3, zc = 0 for different levels of compacting Δy. (a) Output intensity distribution of the read-out beam guided by the first funnel; (b) output of beam guided by the second funnel; (c) output of the two-funnel pattern for the read-out beam launched in between the two funnels with normalized beam intensity profile in the y direction. The absence of efficient beam-splitting in all cases of compacting is evident, whereas a form of super-mode emerges in the Δy = 15μm case.

Fig. 6
Fig. 6

Ultra-compact beam splitting through two parallel funnel patterns for a = 3, zc = Lz/2. The role of the three dimensional nature of the patterns is evident comparing the effect at two different inter-funnel distances Δ25μm (left column) and Δ15μm (right column). (a) Output intensity distribution of the read-out beam guided by the first funnel; (b) output of beam guided by the second funnel; (c) output of the two-funnel pattern for the read-out beam launched in between the two funnels.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( r , t e ) = Δ n 0 e 1 U 0 I ( r ) t e .
Δ n H ( z ) r 2 ,
H ( z ) = Δ n 0 exp ( a / G ( z ) ) 2 a / ( w 0 2 G ( z ) 2 )
H ( z ) = H ( z ) [ 1 + ( E 0 ' / E 0 1 ) exp ( a / 2 G ( z ) ) ] .

Metrics