Abstract

1550-nm pulses from a fiber-mode-locked laser are used to drive an ErAs:GaAs photoconductive switch, resulting in easily measured THz radiation with average broadband (~0.1 to 1.0 THz) power of ≈0.1 mW. The new THz switching mechanism is attributed to fast extrinsic photoconductivity that generates photocarriers (probably electrons) from the ErAs nanoparticles embedded in the material with a lifetime of ~0.45 ps (354 GHz bandwidth). This is the first known demonstration of useful THz power generation by extrinsic photoconductivity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
    [CrossRef]
  2. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
    [CrossRef]
  3. D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
    [CrossRef]
  4. F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).
  5. N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
    [CrossRef]
  6. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
    [CrossRef]
  7. A. Fekecs, M. Bernier, D. Morris, M. Chicoine, F. Schiettekatte, P. Charette, and R. Arès, “Fabrication of high resistivity cold-implanted InGaAsP photoconductors for efficient pulsed terahertz devices,” Opt. Mater. Express 1(7), 1165–1177 (2011).
    [CrossRef]
  8. R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express 19(27), 25911–25917 (2011).
    [CrossRef] [PubMed]
  9. J. L. Hudgins, G. S. Simin, E. Santi, and M. S. Khan, “An Assesment of Wide Bandgap Semiconductors for Power Devices,” IEEE Trans. Power Electron. 18(3), 907–914 (2003).
    [CrossRef]
  10. P. Grenier and J. F. Whitaker, “Subband gap carrier dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(15), 1998–2000 (1997).
    [CrossRef]
  11. H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LT-GaAs detector with 451 fs response at 1.55-µm via two-photon absorption,” Electron. Lett. 35(2), 173–174 (1999).
    [CrossRef]
  12. Y.-J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, “GaAs-based 1.55- μm high speed, high saturation power, low-temperature grown GaAs pin photodetector,” Electron. Lett. 34(12), 1253–1255 (1998).
    [CrossRef]
  13. C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, J. W. Dong, and C. J. Palmstrom, “Self assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
    [CrossRef]
  14. J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
    [CrossRef]
  15. Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, “Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power,” Opt. Lett. 31(11), 1729–1731 (2006).
    [CrossRef] [PubMed]
  16. F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
    [CrossRef]
  17. T. Tongue, Zomega Terahertz Corp., 15 Tech Valley Dr., Suite 102, East Greenbush, NY 12061, private correspondence.
  18. P. Kruse, “Optical and Infrared Detectors” in Optical and Infrared Detectors, 19, 5–69 (Springer, 1980).
  19. J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci. 37(10), 1959–1963 (2009).
    [CrossRef]
  20. K. E. Singer, P. Rutter, A. R. Peaker, and A. C. Wright, “Self-organizing growth of erbium arsenide quantum does and wires in gallium arsenide by molecular beam epitaxy,” Appl. Phys. Lett. 64(6), 707–709 (1994).
    [CrossRef]
  21. E. R. Brown, A. Bacher, D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs,” Phys. Rev. Lett. 90(7), 077403 (2003).
    [CrossRef] [PubMed]

2011 (2)

2009 (1)

J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci. 37(10), 1959–1963 (2009).
[CrossRef]

2008 (1)

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).

2007 (1)

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[CrossRef]

2006 (2)

Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, “Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power,” Opt. Lett. 31(11), 1729–1731 (2006).
[CrossRef] [PubMed]

F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[CrossRef]

2005 (3)

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[CrossRef]

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[CrossRef]

2004 (1)

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
[CrossRef]

2003 (2)

E. R. Brown, A. Bacher, D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs,” Phys. Rev. Lett. 90(7), 077403 (2003).
[CrossRef] [PubMed]

J. L. Hudgins, G. S. Simin, E. Santi, and M. S. Khan, “An Assesment of Wide Bandgap Semiconductors for Power Devices,” IEEE Trans. Power Electron. 18(3), 907–914 (2003).
[CrossRef]

1999 (2)

H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LT-GaAs detector with 451 fs response at 1.55-µm via two-photon absorption,” Electron. Lett. 35(2), 173–174 (1999).
[CrossRef]

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, J. W. Dong, and C. J. Palmstrom, “Self assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[CrossRef]

1998 (1)

Y.-J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, “GaAs-based 1.55- μm high speed, high saturation power, low-temperature grown GaAs pin photodetector,” Electron. Lett. 34(12), 1253–1255 (1998).
[CrossRef]

1997 (1)

P. Grenier and J. F. Whitaker, “Subband gap carrier dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(15), 1998–2000 (1997).
[CrossRef]

1994 (1)

K. E. Singer, P. Rutter, A. R. Peaker, and A. C. Wright, “Self-organizing growth of erbium arsenide quantum does and wires in gallium arsenide by molecular beam epitaxy,” Appl. Phys. Lett. 64(6), 707–709 (1994).
[CrossRef]

1992 (1)

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[CrossRef]

Arès, R.

Averitt, R. D.

F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[CrossRef]

Azfar, T.

H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LT-GaAs detector with 451 fs response at 1.55-µm via two-photon absorption,” Electron. Lett. 35(2), 173–174 (1999).
[CrossRef]

Bacher, A.

E. R. Brown, A. Bacher, D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs,” Phys. Rev. Lett. 90(7), 077403 (2003).
[CrossRef] [PubMed]

Bernas, H.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[CrossRef]

Bernier, M.

Bjarnason, J. E.

Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, “Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power,” Opt. Lett. 31(11), 1729–1731 (2006).
[CrossRef] [PubMed]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
[CrossRef]

Blary, K.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[CrossRef]

Bowers, J. E.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, J. W. Dong, and C. J. Palmstrom, “Self assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[CrossRef]

Y.-J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, “GaAs-based 1.55- μm high speed, high saturation power, low-temperature grown GaAs pin photodetector,” Electron. Lett. 34(12), 1253–1255 (1998).
[CrossRef]

Brown, E. R.

Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, “Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power,” Opt. Lett. 31(11), 1729–1731 (2006).
[CrossRef] [PubMed]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[CrossRef]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
[CrossRef]

E. R. Brown, A. Bacher, D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs,” Phys. Rev. Lett. 90(7), 077403 (2003).
[CrossRef] [PubMed]

Chan, T. L. J.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
[CrossRef]

Charette, P.

Chicoine, M.

Chimot, N.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[CrossRef]

Chiu, Y.-J.

Y.-J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, “GaAs-based 1.55- μm high speed, high saturation power, low-temperature grown GaAs pin photodetector,” Electron. Lett. 34(12), 1253–1255 (1998).
[CrossRef]

Crozat, P.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[CrossRef]

Dietz, R. J. B.

Dong, J. W.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, J. W. Dong, and C. J. Palmstrom, “Self assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[CrossRef]

Driscoll, D.

E. R. Brown, A. Bacher, D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs,” Phys. Rev. Lett. 90(7), 077403 (2003).
[CrossRef] [PubMed]

Driscoll, D. C.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[CrossRef]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
[CrossRef]

Erlig, H.

H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LT-GaAs detector with 451 fs response at 1.55-µm via two-photon absorption,” Electron. Lett. 35(2), 173–174 (1999).
[CrossRef]

Fekecs, A.

Fetterman, H. R.

H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LT-GaAs detector with 451 fs response at 1.55-µm via two-photon absorption,” Electron. Lett. 35(2), 173–174 (1999).
[CrossRef]

Fleischer, S. B.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, J. W. Dong, and C. J. Palmstrom, “Self assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[CrossRef]

Y.-J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, “GaAs-based 1.55- μm high speed, high saturation power, low-temperature grown GaAs pin photodetector,” Electron. Lett. 34(12), 1253–1255 (1998).
[CrossRef]

Gerhard, M.

Gossard, A. C.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).

Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, “Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power,” Opt. Lett. 31(11), 1729–1731 (2006).
[CrossRef] [PubMed]

F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[CrossRef]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[CrossRef]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
[CrossRef]

E. R. Brown, A. Bacher, D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs,” Phys. Rev. Lett. 90(7), 077403 (2003).
[CrossRef] [PubMed]

Grenier, P.

P. Grenier and J. F. Whitaker, “Subband gap carrier dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(15), 1998–2000 (1997).
[CrossRef]

Gupta, S.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[CrossRef]

Hanson, M.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
[CrossRef]

E. R. Brown, A. Bacher, D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs,” Phys. Rev. Lett. 90(7), 077403 (2003).
[CrossRef] [PubMed]

Hanson, M. P.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).

Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, “Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power,” Opt. Lett. 31(11), 1729–1731 (2006).
[CrossRef] [PubMed]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[CrossRef]

Hudgins, J. L.

J. L. Hudgins, G. S. Simin, E. Santi, and M. S. Khan, “An Assesment of Wide Bandgap Semiconductors for Power Devices,” IEEE Trans. Power Electron. 18(3), 907–914 (2003).
[CrossRef]

Ibbetson, J. P.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, J. W. Dong, and C. J. Palmstrom, “Self assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[CrossRef]

Jiang, W.

J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci. 37(10), 1959–1963 (2009).
[CrossRef]

Joulaud, L.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[CrossRef]

Kadow, C.

E. R. Brown, A. Bacher, D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs,” Phys. Rev. Lett. 90(7), 077403 (2003).
[CrossRef] [PubMed]

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, J. W. Dong, and C. J. Palmstrom, “Self assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[CrossRef]

Kadoya, Y.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[CrossRef]

Kamakura, M.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[CrossRef]

Khan, M. S.

J. L. Hudgins, G. S. Simin, E. Santi, and M. S. Khan, “An Assesment of Wide Bandgap Semiconductors for Power Devices,” IEEE Trans. Power Electron. 18(3), 907–914 (2003).
[CrossRef]

Kitagawa, J.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[CrossRef]

Koch, M.

Lampin, J. F.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[CrossRef]

Lee, A. W. M.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
[CrossRef]

Li, H.

J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci. 37(10), 1959–1963 (2009).
[CrossRef]

Liu, H.

J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci. 37(10), 1959–1963 (2009).
[CrossRef]

Liu, J.

J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci. 37(10), 1959–1963 (2009).
[CrossRef]

Lu, H.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).

Mangeney, J.

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[CrossRef]

Maryenko, D.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).

Matsui, T.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[CrossRef]

Mishra, U. K.

Y.-J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, “GaAs-based 1.55- μm high speed, high saturation power, low-temperature grown GaAs pin photodetector,” Electron. Lett. 34(12), 1253–1255 (1998).
[CrossRef]

Morris, D.

Mourou, G. A.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[CrossRef]

Muller, R. E.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
[CrossRef]

O’Hara, F.

F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[CrossRef]

Ospald, F.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).

Palmstrom, C. J.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, J. W. Dong, and C. J. Palmstrom, “Self assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[CrossRef]

Peaker, A. R.

K. E. Singer, P. Rutter, A. R. Peaker, and A. C. Wright, “Self-organizing growth of erbium arsenide quantum does and wires in gallium arsenide by molecular beam epitaxy,” Appl. Phys. Lett. 64(6), 707–709 (1994).
[CrossRef]

Rutter, P.

K. E. Singer, P. Rutter, A. R. Peaker, and A. C. Wright, “Self-organizing growth of erbium arsenide quantum does and wires in gallium arsenide by molecular beam epitaxy,” Appl. Phys. Lett. 64(6), 707–709 (1994).
[CrossRef]

Santi, E.

J. L. Hudgins, G. S. Simin, E. Santi, and M. S. Khan, “An Assesment of Wide Bandgap Semiconductors for Power Devices,” IEEE Trans. Power Electron. 18(3), 907–914 (2003).
[CrossRef]

Sartorius, B.

Schell, M.

Schiettekatte, F.

Simin, G. S.

J. L. Hudgins, G. S. Simin, E. Santi, and M. S. Khan, “An Assesment of Wide Bandgap Semiconductors for Power Devices,” IEEE Trans. Power Electron. 18(3), 907–914 (2003).
[CrossRef]

Singer, K. E.

K. E. Singer, P. Rutter, A. R. Peaker, and A. C. Wright, “Self-organizing growth of erbium arsenide quantum does and wires in gallium arsenide by molecular beam epitaxy,” Appl. Phys. Lett. 64(6), 707–709 (1994).
[CrossRef]

Smet, J. H.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).

Stanze, D.

Streit, D. C.

H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LT-GaAs detector with 451 fs response at 1.55-µm via two-photon absorption,” Electron. Lett. 35(2), 173–174 (1999).
[CrossRef]

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[CrossRef]

Takazato, A.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[CrossRef]

Taylor, A. J.

F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[CrossRef]

Taylor, Z. D.

Tonouchi, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[CrossRef]

Udupa, A.

H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LT-GaAs detector with 451 fs response at 1.55-µm via two-photon absorption,” Electron. Lett. 35(2), 173–174 (1999).
[CrossRef]

von Klitzing, K.

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).

Wang, S.

H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LT-GaAs detector with 451 fs response at 1.55-µm via two-photon absorption,” Electron. Lett. 35(2), 173–174 (1999).
[CrossRef]

Wang, X.

J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci. 37(10), 1959–1963 (2009).
[CrossRef]

Whitaker, J. F.

P. Grenier and J. F. Whitaker, “Subband gap carrier dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(15), 1998–2000 (1997).
[CrossRef]

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[CrossRef]

Wright, A. C.

K. E. Singer, P. Rutter, A. R. Peaker, and A. C. Wright, “Self-organizing growth of erbium arsenide quantum does and wires in gallium arsenide by molecular beam epitaxy,” Appl. Phys. Lett. 64(6), 707–709 (1994).
[CrossRef]

Xie, W.

J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci. 37(10), 1959–1963 (2009).
[CrossRef]

Yuan, J.

J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci. 37(10), 1959–1963 (2009).
[CrossRef]

Zhang, S. Z.

Y.-J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, “GaAs-based 1.55- μm high speed, high saturation power, low-temperature grown GaAs pin photodetector,” Electron. Lett. 34(12), 1253–1255 (1998).
[CrossRef]

Zide, J. M. O.

F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[CrossRef]

Appl. Phys. Lett. (10)

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[CrossRef]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55μm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86(5), 051908 (2005).
[CrossRef]

F. Ospald, D. Maryenko, K. von Klitzing, D. C. Driscoll, M. P. Hanson, H. Lu, A. C. Gossard, and J. H. Smet, “1.55 μm ultrafast photoconductive switches based on ErAs:InGaAs,” Appl. Phys. Lett. 92, 131117 (2008).

N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, “Terahertz radiation from heavy-ion-irradiated InGaAs photoconductive antenna excited at 1.55μm,” Appl. Phys. Lett. 87(19), 193510 (2005).
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56μm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[CrossRef]

P. Grenier and J. F. Whitaker, “Subband gap carrier dynamics in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(15), 1998–2000 (1997).
[CrossRef]

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, J. W. Dong, and C. J. Palmstrom, “Self assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[CrossRef]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, “ErAs:GaAs photomixer with two-decade tunability and 12 µW peak output power,” Appl. Phys. Lett. 85(18), 3983 (2004).
[CrossRef]

F. O’Hara, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Enhanced terahertz detection via ErAs:GaAs nanoisland superlattices,” Appl. Phys. Lett. 88(25), 251119 (2006).
[CrossRef]

K. E. Singer, P. Rutter, A. R. Peaker, and A. C. Wright, “Self-organizing growth of erbium arsenide quantum does and wires in gallium arsenide by molecular beam epitaxy,” Appl. Phys. Lett. 64(6), 707–709 (1994).
[CrossRef]

Electron. Lett. (2)

H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LT-GaAs detector with 451 fs response at 1.55-µm via two-photon absorption,” Electron. Lett. 35(2), 173–174 (1999).
[CrossRef]

Y.-J. Chiu, S. Z. Zhang, S. B. Fleischer, J. E. Bowers, and U. K. Mishra, “GaAs-based 1.55- μm high speed, high saturation power, low-temperature grown GaAs pin photodetector,” Electron. Lett. 34(12), 1253–1255 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V-semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, “High-Power Semi-Insulating GaAs Photoconductive Semiconductor Switch Employing Extrinsic Photoconductivity,” IEEE Trans. Plasma Sci. 37(10), 1959–1963 (2009).
[CrossRef]

IEEE Trans. Power Electron. (1)

J. L. Hudgins, G. S. Simin, E. Santi, and M. S. Khan, “An Assesment of Wide Bandgap Semiconductors for Power Devices,” IEEE Trans. Power Electron. 18(3), 907–914 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

E. R. Brown, A. Bacher, D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Evidence for a strong surface-plasmon resonance on ErAs nanoparticles in GaAs,” Phys. Rev. Lett. 90(7), 077403 (2003).
[CrossRef] [PubMed]

Other (2)

T. Tongue, Zomega Terahertz Corp., 15 Tech Valley Dr., Suite 102, East Greenbush, NY 12061, private correspondence.

P. Kruse, “Optical and Infrared Detectors” in Optical and Infrared Detectors, 19, 5–69 (Springer, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

ErAs:GaAs PC switch with 9x9 micron center gap.

Fig. 2
Fig. 2

(a) Photocurrent vs bias voltage with 1550-nm laser at maximum power (140 mW). (b) DC photocurrent vs average 1550-nm laser power at a fixed bias voltage of 77 V.

Fig. 3
Fig. 3

(a) AC signal (rms) from THz pyroelectric detector vs bias voltage with a constant 1550-nm laser power of 140 mW. (b) AC signal (rms) from same detector vs 1550-nm average laser power at a constant bias of 77 V.

Fig. 4
Fig. 4

AC Signal from THz pyroelectric detector vs frequency at a constant bias of 77 V and constant 1550-nm laser power of 140mW.

Metrics