Abstract

Na3La9O3(BO3)8 (NLBO) single crystals with size up to 35 × 20 × 15 mm3 have been grown by the top-seeded solution growth (TSSG) method. The phase-matching (PM) conditions and the effective nonlinear coefficients were fully calculated for third-harmonic generation (THG) at different wavelengths. The THG experiments for NLBO crystals were performed for the first time. A 355 nm UV light output of 1.9 mW was successfully obtained under a picosecond Nd:YAG laser. Through the calculations of effective nonlinear coefficients, we believe that the output power and conversion efficiency will further increase if the high optical quality NLBO samples can be utilized.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cyranoski, “Materials science: China’s crystal cache,” Nature457(7232), 953–955 (2009).
    [PubMed]
  2. C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature373, 322–324 (1995).
  3. C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, and H. Y. Pang, “High power Q-switched TEM00 mode diode-pumped solid state lasers with >30W output power at 355 nm,” Proc. SPIE6100, 335–348 (2006).
  4. H. Kitano, T. Matsui, K. Sato, N. Ushiyama, M. Yoshimura, Y. Mori, and T. Sasaki, “Efficient 355-nm generation in CsB3O5 crystal,” Opt. Lett.28(4), 263–265 (2003).
    [PubMed]
  5. Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67, 1818–1820 (2005).
  6. Y. Bi, Y. Feng, H. R. Gong, H. B. Zhang, and Z. Y. Xu, “High-average power THG of a diode-pumped Nd:YAG laser at 355 nm generated by LiB3O5 crystal,” Chin. Opt. Lett.1, 91–92 (2003).
  7. Y. C. Wu, G. C. Zhang, P. Z. Fu, and C. T. Chen, Chinese Patent, Application No, 01134393.1, November 2, 2001, Publication No. CN052I010563.
  8. G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth275, e1997–e2001 (2005).
  9. C. Cascales, R. Balda, V. Jubera, J. P. Chaminade, and J. Fernández, “Optical spectroscopic study of Eu3+ crystal field sites in Na3La9O3(BO3)8 crystal,” Opt. Express16(4), 2653–2662 (2008).
    [PubMed]
  10. A. H. Reshak, S. Auluckc, and I. V. Kitykd, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp.472, 30–34 (2009).
  11. J. X. Zhang, G. C. Zhang, Y. Li, Y. Wu, P. Z. Fu, and Y. C. Wu, “Thermophysical properties of a new crystal Na3La9O3(BO3)8,” Cryst. Growth Des.10, 4965–4967 (2010).
  12. J. X. Zhang, G. L. Wang, Z. L. Liu, L. R. Wang, G. C. Zhang, X. Zhang, Y. Wu, P. Z. Fu, and Y. C. Wu, “Growth and optical properties of a new nonlinear Na3La9O3(BO3)8 crystal,” Opt. Express18(1), 237–243 (2010).
    [PubMed]
  13. F. L. Jing, P. Z. Fu, Y. C. Wu, Y. L. Zu, and X. Wang, “Growth and assessment of physical properties of a new nonlinear optical crystal: Lanthanum calcium borate,” Opt. Mater.30, 1867–1872 (2008).
  14. F. Ahmed, “Laser damage threshold of KTiOPO4.,” Appl. Opt.28(1), 119–122 (1989).
    [PubMed]

2010

J. X. Zhang, G. C. Zhang, Y. Li, Y. Wu, P. Z. Fu, and Y. C. Wu, “Thermophysical properties of a new crystal Na3La9O3(BO3)8,” Cryst. Growth Des.10, 4965–4967 (2010).

J. X. Zhang, G. L. Wang, Z. L. Liu, L. R. Wang, G. C. Zhang, X. Zhang, Y. Wu, P. Z. Fu, and Y. C. Wu, “Growth and optical properties of a new nonlinear Na3La9O3(BO3)8 crystal,” Opt. Express18(1), 237–243 (2010).
[PubMed]

2009

A. H. Reshak, S. Auluckc, and I. V. Kitykd, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp.472, 30–34 (2009).

D. Cyranoski, “Materials science: China’s crystal cache,” Nature457(7232), 953–955 (2009).
[PubMed]

2008

C. Cascales, R. Balda, V. Jubera, J. P. Chaminade, and J. Fernández, “Optical spectroscopic study of Eu3+ crystal field sites in Na3La9O3(BO3)8 crystal,” Opt. Express16(4), 2653–2662 (2008).
[PubMed]

F. L. Jing, P. Z. Fu, Y. C. Wu, Y. L. Zu, and X. Wang, “Growth and assessment of physical properties of a new nonlinear optical crystal: Lanthanum calcium borate,” Opt. Mater.30, 1867–1872 (2008).

2006

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, and H. Y. Pang, “High power Q-switched TEM00 mode diode-pumped solid state lasers with >30W output power at 355 nm,” Proc. SPIE6100, 335–348 (2006).

2005

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth275, e1997–e2001 (2005).

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67, 1818–1820 (2005).

2003

1995

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature373, 322–324 (1995).

1989

Ahmed, F.

Auluckc, S.

A. H. Reshak, S. Auluckc, and I. V. Kitykd, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp.472, 30–34 (2009).

Balda, R.

Bi, Y.

Cascales, C.

Chaminade, J. P.

Chang, F.

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth275, e1997–e2001 (2005).

Chen, C.

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth275, e1997–e2001 (2005).

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature373, 322–324 (1995).

Cyranoski, D.

D. Cyranoski, “Materials science: China’s crystal cache,” Nature457(7232), 953–955 (2009).
[PubMed]

Dudley, D. R.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, and H. Y. Pang, “High power Q-switched TEM00 mode diode-pumped solid state lasers with >30W output power at 355 nm,” Proc. SPIE6100, 335–348 (2006).

Feng, Y.

Fernández, J.

Fu, P.

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth275, e1997–e2001 (2005).

Fu, P. Z.

J. X. Zhang, G. C. Zhang, Y. Li, Y. Wu, P. Z. Fu, and Y. C. Wu, “Thermophysical properties of a new crystal Na3La9O3(BO3)8,” Cryst. Growth Des.10, 4965–4967 (2010).

J. X. Zhang, G. L. Wang, Z. L. Liu, L. R. Wang, G. C. Zhang, X. Zhang, Y. Wu, P. Z. Fu, and Y. C. Wu, “Growth and optical properties of a new nonlinear Na3La9O3(BO3)8 crystal,” Opt. Express18(1), 237–243 (2010).
[PubMed]

F. L. Jing, P. Z. Fu, Y. C. Wu, Y. L. Zu, and X. Wang, “Growth and assessment of physical properties of a new nonlinear optical crystal: Lanthanum calcium borate,” Opt. Mater.30, 1867–1872 (2008).

Gong, H. R.

Hicks, A. V.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, and H. Y. Pang, “High power Q-switched TEM00 mode diode-pumped solid state lasers with >30W output power at 355 nm,” Proc. SPIE6100, 335–348 (2006).

Jing, F. L.

F. L. Jing, P. Z. Fu, Y. C. Wu, Y. L. Zu, and X. Wang, “Growth and assessment of physical properties of a new nonlinear optical crystal: Lanthanum calcium borate,” Opt. Mater.30, 1867–1872 (2008).

Jubera, V.

Kitano, H.

Kitykd, I. V.

A. H. Reshak, S. Auluckc, and I. V. Kitykd, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp.472, 30–34 (2009).

Kuroda, I.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67, 1818–1820 (2005).

Li, Y.

J. X. Zhang, G. C. Zhang, Y. Li, Y. Wu, P. Z. Fu, and Y. C. Wu, “Thermophysical properties of a new crystal Na3La9O3(BO3)8,” Cryst. Growth Des.10, 4965–4967 (2010).

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth275, e1997–e2001 (2005).

Liu, Z. L.

Matsui, T.

Mori, Y.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67, 1818–1820 (2005).

H. Kitano, T. Matsui, K. Sato, N. Ushiyama, M. Yoshimura, Y. Mori, and T. Sasaki, “Efficient 355-nm generation in CsB3O5 crystal,” Opt. Lett.28(4), 263–265 (2003).
[PubMed]

Nakai, S.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67, 1818–1820 (2005).

Nakajima, S.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67, 1818–1820 (2005).

Pan, S.

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth275, e1997–e2001 (2005).

Pang, H. Y.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, and H. Y. Pang, “High power Q-switched TEM00 mode diode-pumped solid state lasers with >30W output power at 355 nm,” Proc. SPIE6100, 335–348 (2006).

Reshak, A. H.

A. H. Reshak, S. Auluckc, and I. V. Kitykd, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp.472, 30–34 (2009).

Sasaki, T.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67, 1818–1820 (2005).

H. Kitano, T. Matsui, K. Sato, N. Ushiyama, M. Yoshimura, Y. Mori, and T. Sasaki, “Efficient 355-nm generation in CsB3O5 crystal,” Opt. Lett.28(4), 263–265 (2003).
[PubMed]

Sato, K.

Ushiyama, N.

Wang, C. X.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, and H. Y. Pang, “High power Q-switched TEM00 mode diode-pumped solid state lasers with >30W output power at 355 nm,” Proc. SPIE6100, 335–348 (2006).

Wang, G. L.

Wang, G. Y.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, and H. Y. Pang, “High power Q-switched TEM00 mode diode-pumped solid state lasers with >30W output power at 355 nm,” Proc. SPIE6100, 335–348 (2006).

Wang, L. R.

Wang, X.

F. L. Jing, P. Z. Fu, Y. C. Wu, Y. L. Zu, and X. Wang, “Growth and assessment of physical properties of a new nonlinear optical crystal: Lanthanum calcium borate,” Opt. Mater.30, 1867–1872 (2008).

Wang, Y.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature373, 322–324 (1995).

Wu, B.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature373, 322–324 (1995).

Wu, K.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature373, 322–324 (1995).

Wu, Y.

J. X. Zhang, G. L. Wang, Z. L. Liu, L. R. Wang, G. C. Zhang, X. Zhang, Y. Wu, P. Z. Fu, and Y. C. Wu, “Growth and optical properties of a new nonlinear Na3La9O3(BO3)8 crystal,” Opt. Express18(1), 237–243 (2010).
[PubMed]

J. X. Zhang, G. C. Zhang, Y. Li, Y. Wu, P. Z. Fu, and Y. C. Wu, “Thermophysical properties of a new crystal Na3La9O3(BO3)8,” Cryst. Growth Des.10, 4965–4967 (2010).

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth275, e1997–e2001 (2005).

Wu, Y. C.

J. X. Zhang, G. C. Zhang, Y. Li, Y. Wu, P. Z. Fu, and Y. C. Wu, “Thermophysical properties of a new crystal Na3La9O3(BO3)8,” Cryst. Growth Des.10, 4965–4967 (2010).

J. X. Zhang, G. L. Wang, Z. L. Liu, L. R. Wang, G. C. Zhang, X. Zhang, Y. Wu, P. Z. Fu, and Y. C. Wu, “Growth and optical properties of a new nonlinear Na3La9O3(BO3)8 crystal,” Opt. Express18(1), 237–243 (2010).
[PubMed]

F. L. Jing, P. Z. Fu, Y. C. Wu, Y. L. Zu, and X. Wang, “Growth and assessment of physical properties of a new nonlinear optical crystal: Lanthanum calcium borate,” Opt. Mater.30, 1867–1872 (2008).

Xu, Z. Y.

Yoshimura, M.

Yu, L.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature373, 322–324 (1995).

Zeng, W.

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature373, 322–324 (1995).

Zhang, G.

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth275, e1997–e2001 (2005).

Zhang, G. C.

J. X. Zhang, G. C. Zhang, Y. Li, Y. Wu, P. Z. Fu, and Y. C. Wu, “Thermophysical properties of a new crystal Na3La9O3(BO3)8,” Cryst. Growth Des.10, 4965–4967 (2010).

J. X. Zhang, G. L. Wang, Z. L. Liu, L. R. Wang, G. C. Zhang, X. Zhang, Y. Wu, P. Z. Fu, and Y. C. Wu, “Growth and optical properties of a new nonlinear Na3La9O3(BO3)8 crystal,” Opt. Express18(1), 237–243 (2010).
[PubMed]

Zhang, H. B.

Zhang, J. X.

J. X. Zhang, G. L. Wang, Z. L. Liu, L. R. Wang, G. C. Zhang, X. Zhang, Y. Wu, P. Z. Fu, and Y. C. Wu, “Growth and optical properties of a new nonlinear Na3La9O3(BO3)8 crystal,” Opt. Express18(1), 237–243 (2010).
[PubMed]

J. X. Zhang, G. C. Zhang, Y. Li, Y. Wu, P. Z. Fu, and Y. C. Wu, “Thermophysical properties of a new crystal Na3La9O3(BO3)8,” Cryst. Growth Des.10, 4965–4967 (2010).

Zhang, X.

Zu, Y. L.

F. L. Jing, P. Z. Fu, Y. C. Wu, Y. L. Zu, and X. Wang, “Growth and assessment of physical properties of a new nonlinear optical crystal: Lanthanum calcium borate,” Opt. Mater.30, 1867–1872 (2008).

Appl. Opt.

Appl. Phys. Lett.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett.67, 1818–1820 (2005).

Chin. Opt. Lett.

Cryst. Growth Des.

J. X. Zhang, G. C. Zhang, Y. Li, Y. Wu, P. Z. Fu, and Y. C. Wu, “Thermophysical properties of a new crystal Na3La9O3(BO3)8,” Cryst. Growth Des.10, 4965–4967 (2010).

J. Alloy. Comp.

A. H. Reshak, S. Auluckc, and I. V. Kitykd, “X-ray photoelectron spectroscopy and full potential studies of the electronic density of state of ternary oxyborate Na3La9O3(BO3)8,” J. Alloy. Comp.472, 30–34 (2009).

J. Cryst. Growth

G. Zhang, Y. Wu, Y. Li, F. Chang, S. Pan, P. Fu, and C. Chen, “Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8,” J. Cryst. Growth275, e1997–e2001 (2005).

Nature

D. Cyranoski, “Materials science: China’s crystal cache,” Nature457(7232), 953–955 (2009).
[PubMed]

C. Chen, Y. Wang, B. Wu, K. Wu, W. Zeng, and L. Yu, “Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7,” Nature373, 322–324 (1995).

Opt. Express

Opt. Lett.

Opt. Mater.

F. L. Jing, P. Z. Fu, Y. C. Wu, Y. L. Zu, and X. Wang, “Growth and assessment of physical properties of a new nonlinear optical crystal: Lanthanum calcium borate,” Opt. Mater.30, 1867–1872 (2008).

Proc. SPIE

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, and H. Y. Pang, “High power Q-switched TEM00 mode diode-pumped solid state lasers with >30W output power at 355 nm,” Proc. SPIE6100, 335–348 (2006).

Other

Y. C. Wu, G. C. Zhang, P. Z. Fu, and C. T. Chen, Chinese Patent, Application No, 01134393.1, November 2, 2001, Publication No. CN052I010563.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

As-grown NLBO crystals

Fig. 2
Fig. 2

(a) The PM curve of THG for different wavelengths for type I (thick solid line) and type II (dotted lines), (b) the calculated the effective nonlinear coefficients for the PM-I(ooe) (solid line) and PM-II(eoe) (dotted line).

Fig. 3
Fig. 3

scheme of the experiment setup for THG property measurements.

Fig. 4
Fig. 4

(a) efficiency of THG as a function of the total power density of the fundamental plus SH waves, (b) average output power at 355 nm as a function of the input power.

Metrics