Abstract

We investigate the intrinsic high speed modulation responses of nanolasers and nanoLEDs using bulk, quantum wells (QWs), and quantum dots (QDs) based on a rigorous rate-equation model, which incorporates the optical energy confinement factor to properly account for the negative permittivity and dispersive metal plasma property. We then investigate the dependence of the bandwidth and the energy per bit on the quality factor and the normalized optical volume. We find out that the conditions for the energy per bit less than 50 fJ/bit and 10 fJ/bit are the normalized optical modal volume less than 20 and 5, respectively. In addition, with a uniform quantum dot size in a nanocavity, quantum-dot metal-cavity nanolasers exhibit the largest bandwidth among three types of active materials, and a low energy per bit. With their insensitivity to temperature, quantum-dot metal-cavity nanolasers are favorable for future high speed light sources.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97, 1166–1185 (2009).
    [CrossRef]
  2. S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express19, 2242–2250 (2011).
    [CrossRef] [PubMed]
  3. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express20, 3773–3780 (2012).
    [CrossRef] [PubMed]
  4. E. M. Purcell, “Spontaneous emission probabilities at radio frequency,” Phys. Rev.69, 681 (1946).
  5. H. Yokoyama and S. D. Brorson, “Rate equations analysis of microcavity lasers,” J. Appl. Phys.66, 4801–4805 (1989).
    [CrossRef]
  6. G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
    [CrossRef]
  7. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express17, 7790–7799 (2009).
    [CrossRef] [PubMed]
  8. K. A. Shore, “Modulation bandwidth of metal-clad semiconductor nanolasers with cavity-enhanced spontaneous emission,” Electron. Lett.46, 1688–1689 (2010).
    [CrossRef]
  9. T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express18, 11230–11240 (2010).
    [CrossRef] [PubMed]
  10. T. Suhr, N. Gregersen, M. Lorke, and J. Mørk, “Modulation response of quantum dot nanolight-emitting-diodes exploiting purcell-enhanced spontaneous emission,” Appl. Phys. Lett.98, 211109-1–211109-3 (2011).
    [CrossRef]
  11. S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron.39, 1014–1023 (2009).
    [CrossRef]
  12. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
    [CrossRef]
  13. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
    [CrossRef] [PubMed]
  14. J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express19, 21524–21531 (2011).
    [CrossRef] [PubMed]
  15. K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
    [CrossRef]
  16. C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett.96, 251101-1–251101-3 (2010).
    [CrossRef]
  17. C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, “Metal-cavity surface-emitting microlaser with hybrid metal-DBR reflectors,” Opt. Lett.36, 2447–2449 (2011).
    [CrossRef] [PubMed]
  18. S. L Chuang, C. Y. Ni, C. Y. Lu, and A. Matsudaira, “Metal-cavity nanolasers and nanoLEDs,” IEICE Trans Electron. to be published (2012).
  19. C. Y. Lu and S. L. Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express19, 13225–13244 (2011).
    [CrossRef] [PubMed]
  20. S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express16, 10580–10595 (2008).
    [CrossRef] [PubMed]
  21. S. L. Chuang, Physics of Photnic Devices, 2nd ed. (Wiley, Hoboken, NJ, 2009), Chap. 12.
  22. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (Wiley, New York, NY, 1995), Chap. 4.
  23. Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron.34, 1970–1978 (1998).
    [CrossRef]
  24. N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
    [CrossRef] [PubMed]
  25. A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
    [CrossRef]
  26. N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).
  27. J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron.42, 942–952 (2006).
    [CrossRef]
  28. Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A61, 033808-1–033808-10 (2000).
    [CrossRef]
  29. A. Fiore and A. Markus, “Differential gain and gain compression in quantum dot lasers,” IEEE J. Quantum Electron.43, 287–294 (2007).
    [CrossRef]

2012

2011

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express19, 2242–2250 (2011).
[CrossRef] [PubMed]

C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, “Metal-cavity surface-emitting microlaser with hybrid metal-DBR reflectors,” Opt. Lett.36, 2447–2449 (2011).
[CrossRef] [PubMed]

C. Y. Lu and S. L. Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express19, 13225–13244 (2011).
[CrossRef] [PubMed]

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express19, 21524–21531 (2011).
[CrossRef] [PubMed]

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

T. Suhr, N. Gregersen, M. Lorke, and J. Mørk, “Modulation response of quantum dot nanolight-emitting-diodes exploiting purcell-enhanced spontaneous emission,” Appl. Phys. Lett.98, 211109-1–211109-3 (2011).
[CrossRef]

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

2010

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett.96, 251101-1–251101-3 (2010).
[CrossRef]

K. A. Shore, “Modulation bandwidth of metal-clad semiconductor nanolasers with cavity-enhanced spontaneous emission,” Electron. Lett.46, 1688–1689 (2010).
[CrossRef]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express18, 11230–11240 (2010).
[CrossRef] [PubMed]

2009

E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express17, 7790–7799 (2009).
[CrossRef] [PubMed]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
[CrossRef] [PubMed]

S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron.39, 1014–1023 (2009).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97, 1166–1185 (2009).
[CrossRef]

2008

2007

A. Fiore and A. Markus, “Differential gain and gain compression in quantum dot lasers,” IEEE J. Quantum Electron.43, 287–294 (2007).
[CrossRef]

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

2006

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron.42, 942–952 (2006).
[CrossRef]

2000

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A61, 033808-1–033808-10 (2000).
[CrossRef]

1998

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron.34, 1970–1978 (1998).
[CrossRef]

1991

G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

1989

H. Yokoyama and S. D. Brorson, “Rate equations analysis of microcavity lasers,” J. Appl. Phys.66, 4801–4805 (1989).
[CrossRef]

1946

E. M. Purcell, “Spontaneous emission probabilities at radio frequency,” Phys. Rev.69, 681 (1946).

Arahira, S.

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron.34, 1970–1978 (1998).
[CrossRef]

Becker, J.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

Bimberg, D.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, “Metal-cavity surface-emitting microlaser with hybrid metal-DBR reflectors,” Opt. Lett.36, 2447–2449 (2011).
[CrossRef] [PubMed]

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett.96, 251101-1–251101-3 (2010).
[CrossRef]

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Björk, G.

G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

Blokhin, S. A.

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Bondarenko, O.

Brorson, S. D.

H. Yokoyama and S. D. Brorson, “Rate equations analysis of microcavity lasers,” J. Appl. Phys.66, 4801–4805 (1989).
[CrossRef]

Chang, S. W.

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett.96, 251101-1–251101-3 (2010).
[CrossRef]

S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron.39, 1014–1023 (2009).
[CrossRef]

S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express16, 10580–10595 (2008).
[CrossRef] [PubMed]

Chen, C.-H.

Chuang, S. L

S. L Chuang, C. Y. Ni, C. Y. Lu, and A. Matsudaira, “Metal-cavity nanolasers and nanoLEDs,” IEICE Trans Electron. to be published (2012).

Chuang, S. L.

C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, “Metal-cavity surface-emitting microlaser with hybrid metal-DBR reflectors,” Opt. Lett.36, 2447–2449 (2011).
[CrossRef] [PubMed]

C. Y. Lu and S. L. Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express19, 13225–13244 (2011).
[CrossRef] [PubMed]

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett.96, 251101-1–251101-3 (2010).
[CrossRef]

S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron.39, 1014–1023 (2009).
[CrossRef]

S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express16, 10580–10595 (2008).
[CrossRef] [PubMed]

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron.42, 942–952 (2006).
[CrossRef]

S. L. Chuang, Physics of Photnic Devices, 2nd ed. (Wiley, Hoboken, NJ, 2009), Chap. 12.

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (Wiley, New York, NY, 1995), Chap. 4.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (Wiley, New York, NY, 1995), Chap. 4.

Dähane, M.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Dähne, M.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

de Waardt, H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

deVries, T.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

Ding, K.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

Eijkenmans, T. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

Eisele, H.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Fainman, Y.

Fiol, G.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Fiore, A.

A. Fiore and A. Markus, “Differential gain and gain compression in quantum dot lasers,” IEEE J. Quantum Electron.43, 287–294 (2007).
[CrossRef]

Fischer, U.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Geluk, E. J.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
[CrossRef] [PubMed]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

Germann, T.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Germann, T. D.

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett.96, 251101-1–251101-3 (2010).
[CrossRef]

Gerthsen, D.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Gregersen, N.

T. Suhr, N. Gregersen, M. Lorke, and J. Mørk, “Modulation response of quantum dot nanolight-emitting-diodes exploiting purcell-enhanced spontaneous emission,” Appl. Phys. Lett.98, 211109-1–211109-3 (2011).
[CrossRef]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express18, 11230–11240 (2010).
[CrossRef] [PubMed]

Gu, Q.

Hasebe, K.

Hill, M. T.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
[CrossRef] [PubMed]

Hopfer, F.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Ivanova, L.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

Kakitsuka, T.

Karachinsky, L. Y.

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Karouta, F.

Kawaguchi, Y.

Khajavikhan, M.

Kim, J.

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron.42, 942–952 (2006).
[CrossRef]

Kovsh, A. R.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Kwon, S. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

Lakhani, A.

Lau, E. K.

Ledentsov, N.

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Ledentsov, N. N.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Lee, J. H.

Lee, R. K.

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A61, 033808-1–033808-10 (2000).
[CrossRef]

Lee, Y. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

Lenz, A.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

Lenz, E.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

Leong, E. S. P.

Litvinov, D.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Liu, R.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

Liu, Z.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

Lorke, M.

T. Suhr, N. Gregersen, M. Lorke, and J. Mørk, “Modulation response of quantum dot nanolight-emitting-diodes exploiting purcell-enhanced spontaneous emission,” Appl. Phys. Lett.98, 211109-1–211109-3 (2011).
[CrossRef]

Lotta, J.

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Lu, C. Y.

S. L Chuang, C. Y. Ni, C. Y. Lu, and A. Matsudaira, “Metal-cavity nanolasers and nanoLEDs,” IEICE Trans Electron. to be published (2012).

C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, “Metal-cavity surface-emitting microlaser with hybrid metal-DBR reflectors,” Opt. Lett.36, 2447–2449 (2011).
[CrossRef] [PubMed]

C. Y. Lu and S. L. Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express19, 13225–13244 (2011).
[CrossRef] [PubMed]

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett.96, 251101-1–251101-3 (2010).
[CrossRef]

Luckert, F.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

Marell, M.

Marell, M. J. H.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

Markus, A.

A. Fiore and A. Markus, “Differential gain and gain compression in quantum dot lasers,” IEEE J. Quantum Electron.43, 287–294 (2007).
[CrossRef]

Matsudaira, A.

S. L Chuang, C. Y. Ni, C. Y. Lu, and A. Matsudaira, “Metal-cavity nanolasers and nanoLEDs,” IEICE Trans Electron. to be published (2012).

Matsui, Y.

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron.34, 1970–1978 (1998).
[CrossRef]

Matsuo, S.

Mikhrin, S. S.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97, 1166–1185 (2009).
[CrossRef]

Mørk, J.

T. Suhr, N. Gregersen, M. Lorke, and J. Mørk, “Modulation response of quantum dot nanolight-emitting-diodes exploiting purcell-enhanced spontaneous emission,” Appl. Phys. Lett.98, 211109-1–211109-3 (2011).
[CrossRef]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express18, 11230–11240 (2010).
[CrossRef] [PubMed]

Moser, P.

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Murai, H.

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron.34, 1970–1978 (1998).
[CrossRef]

Mutig, A.

C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, “Metal-cavity surface-emitting microlaser with hybrid metal-DBR reflectors,” Opt. Lett.36, 2447–2449 (2011).
[CrossRef] [PubMed]

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Nadtochi, A. M.

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Nezhad, M. P.

Ni, C. Y.

S. L Chuang, C. Y. Ni, C. Y. Lu, and A. Matsudaira, “Metal-cavity nanolasers and nanoLEDs,” IEICE Trans Electron. to be published (2012).

Ni, C. Y. A.

Ning, C. Z.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
[CrossRef] [PubMed]

Notomi, M.

Notzel, R.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
[CrossRef] [PubMed]

Nötzel, R.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

Novikov, I. I.

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Nozaki, K.

Oei, Y.

Oei, Y. S.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

Ogawa, Y.

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron.34, 1970–1978 (1998).
[CrossRef]

Pohl, U. W.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

Pötschke, K.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequency,” Phys. Rev.69, 681 (1946).

Quast, H.

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Rosenauer, A.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Sato, T.

Savel’ev, A. V.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Schulze, J.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

Shchukin, V.

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Shchukin, V. A.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Shinya, A.

Shore, K. A.

K. A. Shore, “Modulation bandwidth of metal-clad semiconductor nanolasers with cavity-enhanced spontaneous emission,” Electron. Lett.46, 1688–1689 (2010).
[CrossRef]

Simic, A.

Slutsky, B.

Smalbrugge, B.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
[CrossRef] [PubMed]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

Smit, M. K.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
[CrossRef] [PubMed]

Stock, E.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Strittmatter, A.

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Suhr, T.

T. Suhr, N. Gregersen, M. Lorke, and J. Mørk, “Modulation response of quantum dot nanolight-emitting-diodes exploiting purcell-enhanced spontaneous emission,” Appl. Phys. Lett.98, 211109-1–211109-3 (2011).
[CrossRef]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express18, 11230–11240 (2010).
[CrossRef] [PubMed]

Sun, M.

Suzuki, A.

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron.34, 1970–1978 (1998).
[CrossRef]

Takeda, K.

Taniyama, H.

Tucker, R. S.

Turkiewicz, J. P.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

van Otten, F. W. M.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

van Veldhoven, P. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
[CrossRef] [PubMed]

Veldhoven, P. J.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

Wang, H.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

Werner, P.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Wu, M. C.

Xu, Y.

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A61, 033808-1–033808-10 (2000).
[CrossRef]

Yamamoto, Y.

G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

Yariv, A.

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A61, 033808-1–033808-10 (2000).
[CrossRef]

Yin, L.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

Yokoyama, H.

H. Yokoyama and S. D. Brorson, “Rate equations analysis of microcavity lasers,” J. Appl. Phys.66, 4801–4805 (1989).
[CrossRef]

Yvind, K.

Zakharov, N. D.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Zhu, Y.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260 K,” Appl. Phys. Lett.98, 231108-1–231108-3 (2011).
[CrossRef]

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett.96, 251101-1–251101-3 (2010).
[CrossRef]

T. Suhr, N. Gregersen, M. Lorke, and J. Mørk, “Modulation response of quantum dot nanolight-emitting-diodes exploiting purcell-enhanced spontaneous emission,” Appl. Phys. Lett.98, 211109-1–211109-3 (2011).
[CrossRef]

Electron. Lett.

K. A. Shore, “Modulation bandwidth of metal-clad semiconductor nanolasers with cavity-enhanced spontaneous emission,” Electron. Lett.46, 1688–1689 (2010).
[CrossRef]

IEEE J. Quantum Electron.

A. Fiore and A. Markus, “Differential gain and gain compression in quantum dot lasers,” IEEE J. Quantum Electron.43, 287–294 (2007).
[CrossRef]

S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron.39, 1014–1023 (2009).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron.34, 1970–1978 (1998).
[CrossRef]

J. Kim and S. L. Chuang, “Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers,” IEEE J. Quantum Electron.42, 942–952 (2006).
[CrossRef]

G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27, 2386–2396 (1991).
[CrossRef]

IEICE Trans Electron.

S. L Chuang, C. Y. Ni, C. Y. Lu, and A. Matsudaira, “Metal-cavity nanolasers and nanoLEDs,” IEICE Trans Electron. to be published (2012).

J. Appl. Phys.

H. Yokoyama and S. D. Brorson, “Rate equations analysis of microcavity lasers,” J. Appl. Phys.66, 4801–4805 (1989).
[CrossRef]

J. Vac. Sci. Technol. B

A. Lenz, H. Eisele, J. Becker, J. Schulze, T. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U. W. Pohl, and M. Dähne, “Atomic structure and optical properties of InAs submonolayer depositions in GaAs,” J. Vac. Sci. Technol. B29, 04D104 (2011).
[CrossRef]

Nanoscale Res. Lett.

N. N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. A. Shchukin, A. V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähane, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S. S. Mikhrin, A. R. Kovsh, N. D. Zakharov, and P. Werner, “Submonolayer quantum dots for high speed surface emitting lasers,” Nanoscale Res. Lett.2, 417–429 (2007).
[CrossRef] [PubMed]

Nat. Photonics

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. deVries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkenmans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1, 589–594 (2009).
[CrossRef]

Opt. Express

S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express16, 10580–10595 (2008).
[CrossRef] [PubMed]

E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express17, 7790–7799 (2009).
[CrossRef] [PubMed]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17, 11107–11112 (2009).
[CrossRef] [PubMed]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express18, 11230–11240 (2010).
[CrossRef] [PubMed]

S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express19, 2242–2250 (2011).
[CrossRef] [PubMed]

C. Y. Lu and S. L. Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express19, 13225–13244 (2011).
[CrossRef] [PubMed]

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express19, 21524–21531 (2011).
[CrossRef] [PubMed]

S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express20, 3773–3780 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev.

E. M. Purcell, “Spontaneous emission probabilities at radio frequency,” Phys. Rev.69, 681 (1946).

Phys. Rev. A

Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A61, 033808-1–033808-10 (2000).
[CrossRef]

Proc. IEEE

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97, 1166–1185 (2009).
[CrossRef]

Other

S. L. Chuang, Physics of Photnic Devices, 2nd ed. (Wiley, Hoboken, NJ, 2009), Chap. 12.

L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (Wiley, New York, NY, 1995), Chap. 4.

N. Ledentsov, J. Lotta, V. Shchukin, H. Quast, F. Hopfer, G. Fiol, A. Mutig, P. Moser, T. Germann, A. Strittmatter, L. Y. Karachinsky, S. A. Blokhin, I. I. Novikov, A. M. Nadtochi, N. D. Zakharov, P. Werner, and D. Bimberg, “Quantum dot insertions in VCSELs from 840 to 1300 nm: growth, characterization, and device performance,” in Proc. SPIE, Photonics West 2009, San Jose, CA, 7224, 72240P-1–72240P-12 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the metal nanocavity [19]. The device is encapsulated in silver with a SiNx layer between the silver and the semiconductor core. A p-i-n layer structure is used for current injection and the thicknesses of the n-InP, active material, and p-InP layers are 30, 160, and 30 nm, respectively. The n-InGaAsP layer is used as an etch stop layer to remove the substrate during the process. (b) Schematic of the proposed metal-cavity surface-emitting nanolaser. The thicknesses of the 5.5 pairs of n-doped DBR (n-DBR), the active material, and the 5.5 pairs of p-doped DBR (p-DBR) are 860, 245, and 860 nm, respectively. The whole device is encapsulated in silver, which offers high optical reflectivity and good heat dissipation.

Fig. 2
Fig. 2

(a) The maximum bandwidth of metal-cavity bulk nanolasers and nanoLEDs as a function of quality factor Q and the normalized optical modal volume Vn, defined as Veff/(λ0/2n)3. The dashed vertical lines separate nanolasers and nanoLEDs based on whether the stimulated or spontaneous emission is larger. (b) The same for (a) except that QW material is used. The left side of the white dashed vertical line is the nanoLED region, and the right side is the laser region. (c) and (d) are both nanolasers based on QD material with Γcv of 10 meV and 20 meV, respectively. The color bars show the bandwidth with unit of GHz. Notice that the results in all figures are not in the same biases.

Fig. 3
Fig. 3

(a) The τp and τsp,Δn as a function of Q. (b) Two terms in Eq. (19) as a function of Q. The different gain media have different g′s because of their different density of states.

Fig. 4
Fig. 4

(a) and (b) are the L-I curves and the powers from spontaneous and stimulated emissions, respectively, for different Vn’s when Q is 250. (c) and (d) are the L-I curves and the powers from spontaneous and stimulated emissions, respectively, for different Q’s when Vn is 0.006. Notice that in (d), the curves of spontaneous emission powers for Q=1000 and Q=10000 overlap with each other. All results are carried out for metal-cavity QW nanoLEDs.

Fig. 5
Fig. 5

(a) and (b) are the modulation response and the spontaneous and stimulated emissions when Q= 250 and Vn= 0.006 for the same nanoLED. The same for (c) and (d) except for Q= 875. Itr is the transparent current where the stimulated emission turns to positive for nanoLEDs. (e) and (f) are the modulation response and the spontaneous and stimulated emissions when Q= 875 and Vn= 37 for the same nanolaser. The same for (g) and (h) except for Q= 5000. All results are based on the metal-cavity QW nanolasers.

Fig. 6
Fig. 6

The threshold currents for (a) bulk, (b) quantum well, (c) quantum dot with Γcv of 10 meV, and (d) quantum dot with Γcv of 20 meV (d). The high threshold current of QD nanolasers result from the surface recombination lifetime in the paper. 0.05 ns is used for the conservative estimation to Ith.

Fig. 7
Fig. 7

The energy per bit for (a) bulk, (b) quantum well, (c) quantum dot with Γcv of 10 meV, and (d) quantum dot with Γcv of 20 meV. The color bars show the energy per bit as fJ/bit. Two dashed vertical lines represent Vn=5 and 20.

Fig. 8
Fig. 8

(a) The L-I curves of the device in Fig. 1(b) with and without thermal effect for QW and QD lasers. The threshold current is around 0.25 mA for the QW laser and 0.37 mA for the QD laser. (b) and (c) are the modulation responses of the QW laser with and without the thermal effect, respectively. (d) The modulation response of the QD lasers with the thermal effect.

Tables (1)

Tables Icon

Table 1 The parameters used for studying the high-speed modulation response based on the metal nanocavity.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

n t = η i I q V a R nr ( n ) R sp ( n ) R st ( n ) S
S t = S τ p + Γ E β sp ( n ) R sp ( n ) + Γ E R st ( n ) S
Γ E V a d r ε 0 4 [ ε R ( r , ω m ) + ε g ( r , ω m ) ] | m ( r ) | 2 V d r ε 0 4 [ ε R ( r , ω m ) + ε g ( r , ω m ) ] | m ( r ) | 2 V a V eff
ε g ( r , ω ) = [ ω ε R ( r , ω ) ] ω | ω = ω m
R nr ( n ) = v s A a V a n + C n 3
R sp ( n ) = m R sp , m ( n ) + 1 τ sp , rad d K f c , K ( 1 f ν , K )
β sp ( n ) = R sp , m ( n ) R sp ( n ) or R sp , m ( n ) = β sp ( n ) R sp ( n )
S = Γ E β sp ( n ) R sp ( n ) 1 τ p Γ E R st ( n )
1 τ p = ω m Q = ω m Q abs + ω m Q rad
R st ( n ) = v g g ( n ) = 2 π q 2 ε 0 ( ε R , a + ε g , a ) m 0 2 ω m 1 V a K | e ^ p c , v , K | 2 Γ c v π f c , K f v , K ( E c , v h ¯ ω m ) 2 + Γ c v 2
β sp ( n ) R sp ( n ) = 1 V eff 2 π q 2 ε 0 ( ε R , a + ε g , a ) m 0 2 ω m 1 V a K | e ^ p c , v , K | 2 × Γ c v + Γ c π f c , K ( 1 f v , K ) ( E c , v h ¯ ω m ) 2 + ( Γ c v + Γ c ) 2
M ( ω ) = η i Γ E v g g S 0 / ( q V a ) ω r 2 ω 2 j γ ω
M ( ω ) M ( 0 ) = ω r 2 ω r 2 ω 2 j γ ω
ω r 2 = Γ E ( v g g ( n 0 ) ε S 0 ( 1 + ε S 0 ) 2 + β sp R sp S 0 ) ( 1 τ nr , Δ n + 1 τ sp , Δ n 1 τ sp , Δ n ) + g ( n 0 ) v g S 0 τ p ( 1 + ε S 0 ) + 1 τ p τ sp , Δ n
γ = 1 τ nr , Δ n + 1 τ sp , Δ n + v g g ( n 0 ) S 0 1 + ε S 0 + Γ E v g g ( n 0 ) ε S 0 ( 1 + ε S 0 ) 2 + Γ E β sp R sp S 0
g ( n , S ) = g ( n ) 1 + ε S
1 τ nr , Δ n = A + 3 C n 0 2 1 τ sp , Δ n = R sp ( n ) n | n = n 0 1 τ sp , Δ n = [ β sp ( n ) R sp ( n ) ] n | n = n 0
f 3 d B = 1 2 π τ p 2 + ( τ s p , Δ n ) 2
f r , max = 2 2 π K , where K = 4 π ( τ p + ε v g g ( n 0 ) )
β sp ( n ) R sp ( n ) = 1 V eff 2 π q 2 ( ε R , a + ε g , a ) m 0 2 ω m N Q D h i d E g i 2 π σ 2 exp [ ( E E c v , i ) 2 2 σ 2 ] × | e ^ p c , v | 2 Γ c v + Γ c π f c ( E ^ c , i ) ( 1 f v ( E ^ v , i ) ) ( E h ¯ ω m ) 2 + ( Γ c v + Γ c ) 2
R sp , m ( n ) = 1 V a 2 π h ¯ ( c , k c ) , ( v , k v ) | c , k c | μ m ( r ) 2 | v , k v | 2 δ ( h ¯ ω m E c , v ) f c , k c ( 1 f v , k v )
E m ( r , t ) = 1 2 [ m ( r ) e i ω t + m * ( r ) e i ω t ]
h ¯ ω m = ε 0 4 V [ ε R ( r , ω m ) + ε g ( r , ω m ) ] | m ( r ) | 2
δ ( h ¯ ω m E c , v ) 1 π Γ c v ( E c , v h ¯ ω m ) 2 + Γ c v 2 ρ ( h ¯ ω ) 1 π h ¯ Δ ω m ( h ¯ ω h ¯ ω m ) 2 + ( h ¯ Δ ω m ) 2
R sp , m ( n ) = 1 V a 2 π h ( c , k c ) , ( v , k v ) | c , k c | μ m ( r ) 2 | v , k v | 2 × d ( h ¯ ω ) 1 π Γ c v ( E c , v h ¯ ω ) 2 + Γ c v 2 1 π h ¯ Δ ω m ( h ¯ ω h ¯ ω m ) 2 + ( h ¯ Δ ω m ) 2 f c , k c ( 1 f v , k v )
R sp , m ( n ) = 1 V a 2 π h ¯ V a d r | m ( r ) | 2 4 1 V a K | e ^ μ c , v , K | 2 Γ c v + Γ c π f c , K ( 1 f v , K ) ( E c , v h ¯ ω m ) 2 + ( Γ c v + Γ c ) 2 = 1 V a 2 π h ¯ V a d r | m ( r ) | 2 4 q 2 m 0 2 ω m 2 1 V a K | e ^ p c , v , K | 2 Γ c v + Γ c π f c , K ( 1 f v , K ) ( E c , v h ¯ ω m ) 2 + ( Γ c v + Γ c ) 2 = 1 V a 2 π q 2 ε 0 ( ε R , a + ε g , a ) m 0 2 ω m V a d r 1 4 ε 0 ( ε R , a + ε g , a ) | m ( r ) | 2 h ¯ ω m × 1 V a K | e ^ p c , v , K | 2 Γ c v + Γ c π f c , K ( 1 f v , K ) ( E c , v h ¯ ω m ) 2 + ( Γ c v + Γ c ) 2 = Γ E V a 2 π q 2 ε 0 ( ε R , a + ε g , a ) m 0 2 ω m 1 V a K | e ^ p c , v , K | 2 Γ c v + Γ c π f c , K ( 1 f v , K ) ( E c , v h ¯ ω m ) 2 + ( Γ c v + Γ c ) 2 = 1 V eff 2 π q 2 ε 0 ( ε R , a + ε g , a ) m 0 2 ω m 1 V a K | e ^ p c , v , K | 2 Γ c v + Γ c π f c , K ( 1 f v , K ) ( E c , v h ¯ ω m ) 2 + ( Γ c v + Γ c ) 2

Metrics