Abstract

A cascaded-ring-resonator-loaded Mach–Zehnder modulator (CRR-MZM) is presented in which a number of cascaded ring resonators (RRs) are loaded in the interferometer as phase modulators. The ability of the design to provide enhanced modulation efficiency at a wide optical bandwidth is demonstrated in comparison with a conventional single-RR-type modulator without an interferometer. The optimization of RRs for the CRR-MZM is investigated experimentally by measuring the transmission spectra in both intensity and group delay of RRs having various structural parameters. Using the optimized parameters, we fabricated a CRR-MZM with 10 cascaded RRs loaded on each arm of the interferometer on a silicon-on-insulate substrate. The RRs had pin-diodes along the waveguides, which were operated with forward bias voltage. Its modulation efficiency was enhanced by a factor of 4.4 at the expense of additional loss of less than 3.5 dB compared with a standard non-resonant MZM. 10 Gb/s-operations of CRR-MZM were successfully demonstrated using pre-emphasized RF signals with amplitude of 1.5 Vpp in a wavelength range of 2 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
    [CrossRef]
  2. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
    [CrossRef]
  3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  4. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  5. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
    [CrossRef]
  6. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
    [CrossRef]
  7. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  8. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett.35(19), 3246–3248 (2010).
    [CrossRef] [PubMed]
  9. J. Rosenberg, W. M. Green, A. Rylyakov, C. Schow, S. Assefa, B. G. Lee, C. Jahnes, and Y. Vlasov, “Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver,” in Proceedings of Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWQ4.
  10. W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in Proceedings of Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.
  11. J. C. Rosenberg, W. M. J. Green, S. Assefa, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “Low-power 30 Gbps silicon microring modulator,” in Proceedings of Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB9.
  12. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express19(21), 20435–20443 (2011).
    [CrossRef] [PubMed]
  13. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic stabilization of a microring modulator under thermal perturbation,” in Proceedings of Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OW4F.2.
  14. S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express3(7), 072202 (2010).
    [CrossRef]
  15. D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
    [CrossRef]
  16. A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fedeli, L. Vivien, J. Marti, and P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol.30(1), 9–14 (2012).
    [CrossRef]
  17. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011).
    [CrossRef] [PubMed]
  18. A. Brimont, D. J. Thomson, P. Sanchis, J. Herrera, F. Y. Gardes, J. M. Fedeli, G. T. Reed, and J. Martí, “High speed silicon electro-optical modulators enhanced via slow light propagation,” Opt. Express19(21), 20876–20885 (2011).
    [CrossRef] [PubMed]
  19. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
    [CrossRef]
  20. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010).
    [CrossRef] [PubMed]
  21. H.-W. Chen, J. D. Peters, and J. E. Bowers, “Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp,” Opt. Express19(2), 1455–1460 (2011).
    [CrossRef] [PubMed]
  22. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  23. H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach-Zehnder modulator with single microring resonator and optimized arm length,” in Proceedings of 17th Microoptics Conference (Optical Society of Japan, 2011), paper G-5.
  24. F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
    [CrossRef]
  25. H. Tazawa, Y. Kuo, I. Dunayevskiy, J. Luo, A. K. Y. Jen, H. Fetterman, and W. Steier, “Ring resonator based electrooptic polymer traveling-wave modulator,” J. Lightwave Technol.24(9), 3514–3519 (2006).
    [CrossRef]
  26. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
    [CrossRef]
  27. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
    [CrossRef]
  28. H. F. Taylor, “Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation,” J. Lightwave Technol.17(10), 1875–1883 (1999).
    [CrossRef]
  29. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters - a tutorial overview,” J. Lightwave Technol.22(5), 1380–1394 (2004).
    [CrossRef]

2012 (2)

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fedeli, L. Vivien, J. Marti, and P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol.30(1), 9–14 (2012).
[CrossRef]

2011 (4)

2010 (5)

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express3(7), 072202 (2010).
[CrossRef]

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett.35(19), 3246–3248 (2010).
[CrossRef] [PubMed]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

2008 (1)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

2007 (3)

2006 (2)

H. Tazawa, Y. Kuo, I. Dunayevskiy, J. Luo, A. K. Y. Jen, H. Fetterman, and W. Steier, “Ring resonator based electrooptic polymer traveling-wave modulator,” J. Lightwave Technol.24(9), 3514–3519 (2006).
[CrossRef]

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters - a tutorial overview,” J. Lightwave Technol.22(5), 1380–1394 (2004).
[CrossRef]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

1999 (1)

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Ahn, D.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Akiyama, S.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express3(7), 072202 (2010).
[CrossRef]

Alic, N.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Apsel, A. B.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Asghari, M.

Baba, T.

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011).
[CrossRef] [PubMed]

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express3(7), 072202 (2010).
[CrossRef]

Baehr-Jones, T.

Beals, M.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Beattie, J.

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

Benight, S.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Bernardis, S.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Bojko, R.

Bowers, J. E.

Brimont, A.

Carothers, D.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Carothers, R. L.

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

Chen, H.-W.

Chen, Y.-K.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Cheng, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Conway, T.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Cunningham, J. E.

Dalton, L.

Ding, R.

Dong, P.

Dunayevskiy, I.

Fedeli, J. M.

Fedeli, J.-M.

Feng, D.

Fetterman, H.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Fournier, M.

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

A. Brimont, D. J. Thomson, P. Sanchis, J. Herrera, F. Y. Gardes, J. M. Fedeli, G. T. Reed, and J. Martí, “High speed silicon electro-optical modulators enhanced via slow light propagation,” Opt. Express19(21), 20876–20885 (2011).
[CrossRef] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Gill, D. M.

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Green, W. M.

Grove, M.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Gutierrez, A. M.

Hatori, N.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express3(7), 072202 (2010).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Herrera, J.

Hill,

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

Hochberg, M.

Hong, C.-Y.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Hu, Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Huang, S.

Ishikura, N.

Jen, A.

Jen, A. K. Y.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Kamocsai, C. M.

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

Kimerling, L. C.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Krishnamoorthy, A. V.

Kun-Yii Tu, A. E.

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Kuo, Y.

Kurahashi, T.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express3(7), 072202 (2010).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Li, G.

Liang, H.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liao, S.

Lipson, M.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007).
[CrossRef] [PubMed]

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liu, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Liu, Y.

Luo, J.

Luo, Y.

Manipatruni, S.

Marris-Morini, D.

Marti, J.

Martí, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Michel, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Nguyen, H. C.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Pan, D.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Patel, S. S.

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Peters, J. D.

Pomerene, A.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Pomerene, A. T.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Pomerene, D.

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

Qian, W.

Radic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Raj, K.

Rasigade, G.

Rasras, M.

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

A. Brimont, D. J. Thomson, P. Sanchis, J. Herrera, F. Y. Gardes, J. M. Fedeli, G. T. Reed, and J. Martí, “High speed silicon electro-optical modulators enhanced via slow light propagation,” Opt. Express19(21), 20876–20885 (2011).
[CrossRef] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Rooks, M. J.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sakai, Y.

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sanchis, P.

Schmidt, B.

Schwelb, O.

Sekaric, L.

Shafiiha, R.

Shakya, J.

Shinkawa, M.

Shubin, I.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Sparacin, D. K.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Steier, W.

Sullivan, P.

Sun, R.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Taylor, H. F.

Tazawa, H.

Thacker, H.

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

A. Brimont, D. J. Thomson, P. Sanchis, J. Herrera, F. Y. Gardes, J. M. Fedeli, G. T. Reed, and J. Martí, “High speed silicon electro-optical modulators enhanced via slow light propagation,” Opt. Express19(21), 20876–20885 (2011).
[CrossRef] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Tu, K.-Y.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Usuki, T.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express3(7), 072202 (2010).
[CrossRef]

Vivien, L.

Vlasov, Y. A.

Wang, X.

White,

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

White, A. E.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Witzens, J.

Wong, C. W.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

Xu, Q.

Yamamoto, T.

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express3(7), 072202 (2010).
[CrossRef]

Yao, J.

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

Young-Kai Chen, A.

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

Zheng, X.

Ziebell, M.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Appl. Phys. Express (1)

S. Akiyama, T. Kurahashi, T. Baba, N. Hatori, T. Usuki, and T. Yamamoto, “A 1V peak-to-peak driven 10-Gbps slow-light silicon Mach-Zehnder modulator using cascaded ring resonators,” Appl. Phys. Express3(7), 072202 (2010).
[CrossRef]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett.36(4), 321–322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Gill, S. S. Patel, M. Rasras, A. E. Kun-Yii Tu, White, A. Young-Kai Chen, D. Pomerene, R. L. Carothers, C. M. Kamocsai, Hill, and J. Beattie, “CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization,” IEEE J. Sel. Top. Quantum Electron.16(1), 45–52 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

J. Lightwave Technol. (5)

Nat. Photonics (3)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

F. Xia, L. Sekaric, and Y. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007).
[CrossRef]

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express (7)

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express15(2), 430–436 (2007).
[CrossRef] [PubMed]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

H.-W. Chen, J. D. Peters, and J. E. Bowers, “Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp,” Opt. Express19(2), 1455–1460 (2011).
[CrossRef] [PubMed]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express19(21), 20435–20443 (2011).
[CrossRef] [PubMed]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011).
[CrossRef] [PubMed]

A. Brimont, D. J. Thomson, P. Sanchis, J. Herrera, F. Y. Gardes, J. M. Fedeli, G. T. Reed, and J. Martí, “High speed silicon electro-optical modulators enhanced via slow light propagation,” Opt. Express19(21), 20876–20885 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Proc. SPIE (1)

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006).
[CrossRef]

Other (5)

J. Rosenberg, W. M. Green, A. Rylyakov, C. Schow, S. Assefa, B. G. Lee, C. Jahnes, and Y. Vlasov, “Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver,” in Proceedings of Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWQ4.

W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Controlled coupling in silicon microrings for high-speed, high extinction ratio, and low-chirp modulation,” in Proceedings of Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.

J. C. Rosenberg, W. M. J. Green, S. Assefa, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “Low-power 30 Gbps silicon microring modulator,” in Proceedings of Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB9.

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic stabilization of a microring modulator under thermal perturbation,” in Proceedings of Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2012), paper OW4F.2.

H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach-Zehnder modulator with single microring resonator and optimized arm length,” in Proceedings of 17th Microoptics Conference (Optical Society of Japan, 2011), paper G-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic view of RR-based modulators and definition of RR parameters. (a) SRR-SSM. (b) Coupling between ring and bus waveguide as a part of RRs. y2 and 1 − y2 indicate the fraction of the power transmitted to the bus and the ring waveguide, respectively. (c) CRR-MZM.

Fig. 2
Fig. 2

Calculated response of single RR and five cascaded RRs as a function of RT phase ϕ. 1-y2 is coupling efficiency of coupling region in RRs. A power of 1-y2 is transferred from bus to ring waveguide in the coupling region. N corresponds to the number of RRs cascaded. (a) Intensity P. (b) Sensitivity of P to changes in ϕ. (c) Phase Φ. (d) Sensitivity of Φ to changes in ϕ. (a) and (b) are calculated for critical coupling, whereas (c) and (d) are calculated for the lossless case.

Fig. 3
Fig. 3

Schematic of RRs used in experiments. (a) Cross section of waveguide. (b) Waveguide pattern and definition of parameters.

Fig. 4
Fig. 4

Transmission spectra in intensity and GD of single RR with Lc = 5.0 μm and R = 2.5, 4.0, and 7.2 μm.

Fig. 5
Fig. 5

Single peaks nearest to 1550 nm in GD spectra in Fig. 4. Measured curves are fitted by a Lorentzian function. (a) R = 2.5 μm. (b) R = 4.0 μm. (c) R = 7.2 μm.

Fig. 6
Fig. 6

GD–intensity plot of single peak nearest to 1550 nm in the spectra in Fig. 4.

Fig. 7
Fig. 7

Transmission spectra in intensity and GD of single RR with R = 7.2 μm and Lc = 2.5, 5.0, and 7.5 μm.

Fig. 8
Fig. 8

Single peaks nearest to 1550 nm in intensity and GD spectra in Fig. 7. Measured curves are fitted by analytical formula of spectra for intensity and group delay derived from the Eq. (1), with the parameters of x and y. The values of x and y (1-y2) used in the fittings are indicated in each graph. (a) Lc = 2.5 μm. (b) Lc = 5.0 μm. (c) Lc = 7.5 μm.

Fig. 9
Fig. 9

Summary of GD characteristics of RRs with different values of R and Lc derived from single peak of GD nearest to 1550 nm in the spectra. Two samples were measured and analyzed for each combination of R and Lc. (a) Effective group index (ng_eff) and (b) FWHM.

Fig. 10
Fig. 10

GD–intensity plot of single peak nearest to 1550 nm in the spectra in Fig. 7.

Fig. 11
Fig. 11

Transmission spectra in intensity and GD of 10 cascaded RRs with R = 7.2 μm and Lc = 2.5, 5.0, and 7.5 μm.

Fig. 12
Fig. 12

Fabricated CRR-MZM. (a) Microscope photograph of top view. (b) Schematic view of one of cascaded RR in (a). (c) Schematic of cross section of dotted line in (b).

Fig. 13
Fig. 13

(a) Measured transmission spectra of reference single passive waveguide (black), standard MZM (blue), and CRR-MZM (red). The photographs inside graph show device parts of test chip. (b) Close-up of single dip in the spectrum of the CRR-MZM. Arrows indicate wavelengths at which 10-Gb/s eye diagrams shown in Fig. 17 were measured.

Fig. 14
Fig. 14

10-Gb/s large-signal modulation experiment using fabricated CRR-MZM. (a) Experimental setup. (b) Driving voltage waveform. (c) Eye diagram of optical output.

Fig. 15
Fig. 15

Dependence of (a) ER and (b) IL on input wavelength in 10-Gb/s modulation experiments. Phase balance between the two arms was adjusted to obtain the same ER at the bar and cross ports.

Fig. 16
Fig. 16

Dependence of (a) ER and (b) IL on input wavelength in 10-Gb/s modulation experiments. Phase balance between the two arms was adjusted to obtain a constant ER from the bar port.

Fig. 17
Fig. 17

10-Gb/s eye diagrams of fabricated CRR-MZM in wavelength range of 2 nm. Input wavelengths were those indicated by arrows in Fig. 13(b).

Tables (1)

Tables Icon

Table 1 Performance Comparison between CRR-MZM and Standard MZM in 100 Mb/s-modulation Experiments

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T(ϕ)= x e iϕ y xy e iϕ 1 ,wherex= e α 2 ( 2πR ) ,andϕ=β( 2πR ).
P( ϕ )= | T(ϕ) | 2 = 2 y 2 ( 1cosϕ ) y 4 +12 y 2 cosϕ .
d dϕ P( ϕ )= { y( y 2 1 ) y 4 +12 y 2 cosϕ } 2 2sinϕ.
tanΦ( ϕ )= ( y 2 1 )sinϕ 2y( 1+ y 2 )cosϕ ,whereΦ=arg{ T(ϕ) }.
η= d dϕ Φ( ϕ )= 1 y 2 ( 1+ y 2 )2ycosϕ .
Δ λ FWHM = λ 2 2π n g 1 y 2 2πR ,
η MAX = 1+y 1y ,
ΔΦ= 1+y 1y 2π( 2πR ) λ Δn.
121 mV pp 26.2 mV pp 500μm 527μm =4.4

Metrics