Abstract

Compact fiber-coupled dielectric-loaded plasmonic Mach-Zehnder interferometers operating at telecom wavelengths and controlled via the thermo-optic effect are reported. Two fabricated structures with Cytop substrate and a ridge made of PMMA or a cycloaliphatic acrylate polymer (CAP) were considered showing low switching power of 2.35 mW and switching time in the range of microseconds for a CAP ridge and milliseconds switching time for a PMMA ridge. Full output modulation is demonstrated for the structure with a CAP ridge and 40% modulation with a PMMA ridge.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Plasmonic Nanoguides and Circuits, S. I. Bozhevolnyi, ed. (Pan Stanford Publishing, 2008).
  2. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
    [CrossRef]
  3. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
    [CrossRef]
  4. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007).
    [CrossRef]
  5. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
    [CrossRef]
  6. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
    [CrossRef]
  7. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [CrossRef]
  8. A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19(4), 2972–2978 (2011).
    [CrossRef] [PubMed]
  9. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express 18(5), 5314–5319 (2010).
    [CrossRef] [PubMed]
  10. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
    [CrossRef] [PubMed]
  11. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
    [CrossRef]
  12. R. Daviau, A. Khan, E. Lisicka-Skrzek, R. Niall Tait, and P. Berini, “Fabrication of surface Plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87(10), 1914–1921 (2010).
    [CrossRef]
  13. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010).
    [CrossRef] [PubMed]
  14. J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides,” J. Lightwave Technol. 29(10), 1473–1481 (2011).
    [CrossRef]
  15. V. S. Volkov, Z. H. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36(21), 4278–4280 (2011).
    [CrossRef] [PubMed]

2011 (4)

2010 (5)

2008 (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

2007 (2)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007).
[CrossRef]

2006 (1)

2004 (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Albrektsen, O.

Andersen, T. B.

Atwater, H. A.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[CrossRef]

Berini, P.

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. Niall Tait, and P. Berini, “Fabrication of surface Plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87(10), 1914–1921 (2010).
[CrossRef]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
[CrossRef]

Bozhevolnyi, S. I.

A. Kumar, J. Gosciniak, T. B. Andersen, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Power monitoring in dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 19(4), 2972–2978 (2011).
[CrossRef] [PubMed]

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides,” J. Lightwave Technol. 29(10), 1473–1481 (2011).
[CrossRef]

V. S. Volkov, Z. H. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36(21), 4278–4280 (2011).
[CrossRef] [PubMed]

J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Opt. Express 18(5), 5314–5319 (2010).
[CrossRef] [PubMed]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010).
[CrossRef] [PubMed]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Briggs, R. M.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[CrossRef]

Burgos, S. P.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[CrossRef]

Coppola, G.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Daviau, R.

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. Niall Tait, and P. Berini, “Fabrication of surface Plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87(10), 1914–1921 (2010).
[CrossRef]

Dereux, A.

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Feigenbaum, E.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[CrossRef]

Gagnon, G.

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Gosciniak, J.

Grandidier, J.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[CrossRef]

Han, Z. H.

Holmgaard, T.

Iodice, M.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Keshmiri, H.

Khan, A.

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. Niall Tait, and P. Berini, “Fabrication of surface Plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87(10), 1914–1921 (2010).
[CrossRef]

Kjelstrup-Hansen, J.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007).
[CrossRef]

Kumar, A.

Lahoud, N.

Leosson, K.

Lisicka-Skrzek, E.

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. Niall Tait, and P. Berini, “Fabrication of surface Plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87(10), 1914–1921 (2010).
[CrossRef]

Markey, L.

Massenot, S.

Mattiussi, G. A.

Niall Tait, R.

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. Niall Tait, and P. Berini, “Fabrication of surface Plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87(10), 1914–1921 (2010).
[CrossRef]

Nielsen, M. G.

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Rendina, I.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Sirleto, L.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Volkov, V. S.

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Microelectron. Eng. (1)

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. Niall Tait, and P. Berini, “Fabrication of surface Plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87(10), 1914–1921 (2010).
[CrossRef]

Nano Lett. (1)

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides,” Nano Lett. 10(12), 4851–4857 (2010).
[CrossRef]

Opt. Eng. (1)

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[CrossRef]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Other (1)

Plasmonic Nanoguides and Circuits, S. I. Bozhevolnyi, ed. (Pan Stanford Publishing, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic representation of the investigated Mach-Zehnder interferometer with the end-fire in/out arrangement where the bias voltage is applied to the electrodes. (b) and (c) cross-section of the fabricated DLSPPW structures with a PMMA (b) and CAP (c) ridge on top of a gold stripe deposited on an underlying Cytop layer. The time-averaged electric field distribution of the fundamental DLSPPW mode calculated at λ = 1550nm for a structure with a PMMA (d) and CAP (e) ridge with a characteristic mode effective index and propagation length.

Fig. 2
Fig. 2

Dependence of MZI transmission for PMMA-loaded ridge (a) on the applied electrical power and (b) its temporal response measured at the frequency of 2Hz for three values of applied electrical power. The black curve represents the applied voltage.

Fig. 3
Fig. 3

Dependence of MZI transmission (a) on the applied electrical power for structures with CAP-loaded ridge (nr. 2 and 3) and (b) a temporal response (MZI nr. 2) measured at the frequency of 1 kHz for four values of applied electrical power. The black curve represents the applied voltage.

Fig. 4
Fig. 4

Dependences of MZI transmission on the modulation frequency for structure with (a) PMMA and (b) CAP ridge for wavelength λ = 1550nm.

Fig. 5
Fig. 5

Wavelength dependences of MZI signal amplitude for structures with (a) PMMA and (b) CAP ridge. (a) Signal amplitude measured at the modulation frequency of 2Hz without an applied voltage (circle marks) and with a square applied voltage (square marks) corresponding to 9.6 mW applied electrical power with an offset of 4.8 mW. (b) Signal amplitude measured with a square applied voltage corresponding to 7.5 mW (square marks) and 13.8 mW (triangle marks) an applied electrical power with an offset of 3.75 mW and 6.9 mW respectively at the modulation frequency of 1 kHz. Solid curves show transmission spectra obtained by modeling.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=π= 2π λ ΔnL
Δϕ=π= 2π λ n T ΔTL
T out ~ T input ( 1+Vcos(Δϕ) )
V= ( T max T min ) ( T max + T min ) = ( T ON T OFF ) ( T ON + T OFF ) =2k( 1+k )
ER=10log( T ON T OFF )

Metrics