Abstract

By reversing the pillars formed on SiO2 mask sidewalls, it is possible to fabricate deep-submicron slots with width down to 240nm by standard UV-lithography. Based on this newly developed process, a single-mode slotted Fabry-Perot laser and a wavelength tunable laser with periodically distributed slots are designed, fabricated and characterized. Numerical analysis shows the low-loss advantage of deep-submicron slots. Experimentally, the slotted Fabry-Perot laser showed a low threshold current of 22mA and the tunable slotted grating laser exhibited a maximum side mode suppression ratio (SMSR) of 43dB and a discretely tuning range of about 38nm. The method has excellent potential for low cost fabrication of photonic devices with deep-submicron features without using expensive tools such as the e-beam lithography.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
    [CrossRef]
  2. Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
    [CrossRef]
  3. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
    [CrossRef]
  4. H. Ishii, H. Oohashi, K. Kasaya, K. Tsuzuki, and Y. Tohmori, “High power (40 mW) L-band tunable DFB laser array module using current tuning,” in Optical Fiber Communication (OFC), Anaheim, CA, OTuE1 (2005).
  5. B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
    [CrossRef]
  6. J. P. Engelstaedter, B. Roycroft, F. Peters, and B. Corbett, “Wavelength tunable laser using an interleaved rear reflector,” IEEE Photon. Technol. Lett.22(1), 54–56 (2010).
    [CrossRef]
  7. D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
    [CrossRef]
  8. L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs–InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010).
    [CrossRef]
  9. J.-J. He, “Proposal for Q-Modulated Semiconductor Laser,” IEEE Photon. Technol. Lett.19(5), 285–287 (2007).
    [CrossRef]
  10. J.-J. He and D. Liu, “Wavelength switchable semiconductor laser using half-wave V-coupled cavities,” Opt. Express16(6), 3896–3911 (2008).
    [CrossRef] [PubMed]
  11. R. Pregla and W. Pascher, “The method of lines,” in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh, ed. (Wiley, 1989), pp. 381–446.
  12. Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006).
    [CrossRef]
  13. Y. Shi, S. He, and S. Anand, “Ultracompact directional couplers realized in InP by utilizing feature size dependent etching,” Opt. Lett.33(17), 1927–1929 (2008).
    [CrossRef] [PubMed]
  14. G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987).
    [CrossRef]
  15. E. Michielssen, W. C. Chew, and D. S. Weile, “Genetic algorithm optimized perfectly matched layers for finite difference frequency domain applications,” in Antennas and Propagation Society International Symposium, 1996, AP-S. Digest (1996), Vol. 3, pp. 2106–2109.
  16. B. Corbett, C. Percival, and P. Lambkin, “Multiwavelength array of single-frequency stabilized Fabry–Perot lasers,” IEEE J. Quantum Electron.41(4), 490–494 (2005).
    [CrossRef]
  17. J. Jin, L. Wang, T. Yu, Y. Wang, and J.-J. He, “Widely wavelength switchable V-coupled-cavity semiconductor laser with ~40 dB side-mode suppression ratio,” Opt. Lett.36(21), 4230–4232 (2011).
    [CrossRef] [PubMed]

2011

2010

J. P. Engelstaedter, B. Roycroft, F. Peters, and B. Corbett, “Wavelength tunable laser using an interleaved rear reflector,” IEEE Photon. Technol. Lett.22(1), 54–56 (2010).
[CrossRef]

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs–InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010).
[CrossRef]

2009

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

2008

2007

J.-J. He, “Proposal for Q-Modulated Semiconductor Laser,” IEEE Photon. Technol. Lett.19(5), 285–287 (2007).
[CrossRef]

2006

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006).
[CrossRef]

2005

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
[CrossRef]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

B. Corbett, C. Percival, and P. Lambkin, “Multiwavelength array of single-frequency stabilized Fabry–Perot lasers,” IEEE J. Quantum Electron.41(4), 490–494 (2005).
[CrossRef]

2002

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

1987

G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987).
[CrossRef]

Agrawal, V.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Akulova, Y. A.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Anand, S.

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Björk, G.

G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987).
[CrossRef]

Bryce, A.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs–InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010).
[CrossRef]

Busico, G.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Byrne, D.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006).
[CrossRef]

Byrne, D. C.

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Chipman, C.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Coldren, C. W.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Coldren, L. A.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Corbett, B.

J. P. Engelstaedter, B. Roycroft, F. Peters, and B. Corbett, “Wavelength tunable laser using an interleaved rear reflector,” IEEE Photon. Technol. Lett.22(1), 54–56 (2010).
[CrossRef]

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006).
[CrossRef]

B. Corbett, C. Percival, and P. Lambkin, “Multiwavelength array of single-frequency stabilized Fabry–Perot lasers,” IEEE J. Quantum Electron.41(4), 490–494 (2005).
[CrossRef]

Dahl, A. P.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

De Merlier, J.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
[CrossRef]

Donegan, J. F.

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006).
[CrossRef]

Duck, J. P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Dylewicz, R.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs–InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010).
[CrossRef]

Emanuel, M.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Engelstaedter, J. P.

J. P. Engelstaedter, B. Roycroft, F. Peters, and B. Corbett, “Wavelength tunable laser using an interleaved rear reflector,” IEEE Photon. Technol. Lett.22(1), 54–56 (2010).
[CrossRef]

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

Epp, P.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Faraji, B.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Fish, G. A.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Furushima, Y.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
[CrossRef]

Guo, W. H.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006).
[CrossRef]

Guo, W.-H.

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

Haji, M.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs–InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010).
[CrossRef]

He, J.-J.

He, S.

Heanue, J.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Hegblom, E.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Hong, X.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Hou, L.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs–InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010).
[CrossRef]

Jin, J.

Koh, P.-C.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Kozodoy, P.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Kubicky, J.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Kudo, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
[CrossRef]

Lambkin, P.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006).
[CrossRef]

B. Corbett, C. Percival, and P. Lambkin, “Multiwavelength array of single-frequency stabilized Fabry–Perot lasers,” IEEE J. Quantum Electron.41(4), 490–494 (2005).
[CrossRef]

Larson, M. C.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Liu, D.

Lu, Q. Y.

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006).
[CrossRef]

Mack, M. P.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Mizutani, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
[CrossRef]

Nakagawa, S.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Naniwae, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
[CrossRef]

Nilsson, O.

G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987).
[CrossRef]

O’Callaghan, J.

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

Penniman, S. K.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Percival, C.

B. Corbett, C. Percival, and P. Lambkin, “Multiwavelength array of single-frequency stabilized Fabry–Perot lasers,” IEEE J. Quantum Electron.41(4), 490–494 (2005).
[CrossRef]

Peters, F.

J. P. Engelstaedter, B. Roycroft, F. Peters, and B. Corbett, “Wavelength tunable laser using an interleaved rear reflector,” IEEE Photon. Technol. Lett.22(1), 54–56 (2010).
[CrossRef]

Peters, F. H.

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

Pezeshki, B.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Phelan, R.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006).
[CrossRef]

Ponnampalam, L.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Qiu, B.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs–InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010).
[CrossRef]

Razazan, T.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Rishton, S.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Robbins, D. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Roycroft, B.

J. P. Engelstaedter, B. Roycroft, F. Peters, and B. Corbett, “Wavelength tunable laser using an interleaved rear reflector,” IEEE Photon. Technol. Lett.22(1), 54–56 (2010).
[CrossRef]

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

Sato, K.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
[CrossRef]

Sato, S.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
[CrossRef]

Schow, C. L.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Sherback, M.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Shi, Y.

Stolarz, P.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs–InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010).
[CrossRef]

Strand, T. A.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Sudo, S.

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
[CrossRef]

Ton, D.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Vail, E.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Wale, M. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Wang, L.

Wang, Y.

Ward, A. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Whitbread, N. D.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

Wipiejewski, T.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

Yoffe, G.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

Yu, T.

Zou, S.

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

IEEE J. Quantum Electron.

B. Corbett, C. Percival, and P. Lambkin, “Multiwavelength array of single-frequency stabilized Fabry–Perot lasers,” IEEE J. Quantum Electron.41(4), 490–494 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, “Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters,” IEEE J. Sel. Top. Quantum Electron.8(6), 1349–1357 (2002).
[CrossRef]

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance,” IEEE J. Sel. Top. Quantum Electron.11(1), 149–156 (2005).
[CrossRef]

D. C. Byrne, J. P. Engelstaedter, W.-H. Guo, Q. Y. Lu, B. Corbett, B. Roycroft, J. O’Callaghan, F. H. Peters, and J. F. Donegan, “Discretely tunable semiconductor lasers suitable for photonic integration,” IEEE J. Sel. Top. Quantum Electron.15(3), 482–487 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. Bryce, “Monolithic 40-GHz passively mode-locked AlGaInAs–InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010).
[CrossRef]

J.-J. He, “Proposal for Q-Modulated Semiconductor Laser,” IEEE Photon. Technol. Lett.19(5), 285–287 (2007).
[CrossRef]

B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp, S. Rishton, D. Ton, B. Faraji, M. Emanuel, X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan, “20-mW widely tunable laser module using DFB array and MEMS selection,” IEEE Photon. Technol. Lett.14(10), 1457–1459 (2002).
[CrossRef]

J. P. Engelstaedter, B. Roycroft, F. Peters, and B. Corbett, “Wavelength tunable laser using an interleaved rear reflector,” IEEE Photon. Technol. Lett.22(1), 54–56 (2010).
[CrossRef]

J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror,” IEEE Photon. Technol. Lett.17(3), 681–683 (2005).
[CrossRef]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photon. Technol. Lett.18(24), 2605–2607 (2006).
[CrossRef]

J. Lightwave Technol.

G. Björk and O. Nilsson, “A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers,” J. Lightwave Technol.5(1), 140–146 (1987).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. Pregla and W. Pascher, “The method of lines,” in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh, ed. (Wiley, 1989), pp. 381–446.

E. Michielssen, W. C. Chew, and D. S. Weile, “Genetic algorithm optimized perfectly matched layers for finite difference frequency domain applications,” in Antennas and Propagation Society International Symposium, 1996, AP-S. Digest (1996), Vol. 3, pp. 2106–2109.

H. Ishii, H. Oohashi, K. Kasaya, K. Tsuzuki, and Y. Tohmori, “High power (40 mW) L-band tunable DFB laser array module using current tuning,” in Optical Fiber Communication (OFC), Anaheim, CA, OTuE1 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic (a) and optical microscope picture (b) of a slotted distributed reflector laser.

Fig. 2
Fig. 2

(a) Contour map of the intensity reflection with respect to the slot width and depth (rectangular slot); (b) Comparing of the transmission of rectangular and non-rectangular slots as a function of the slot width with the reflection varies from 0.8% to 1.4%.

Fig. 3
Fig. 3

SEM picture of an etched slot of about 240nm with a fitting profile (dashed line).

Fig. 4
Fig. 4

(a) Contour map of the intensity reflection with respect to the slot width and depth (non-rectangular slot); (b) Comparing of the transmission of rectangular and non-rectangular slots as a function of the slot width with the reflection varies from 0.8% to 1.4%; (c) Effective width of a non-rectangular slot.

Fig. 5
Fig. 5

Fabrication steps of the deep-submicron slots.

Fig. 6
Fig. 6

(a) Deep submicron pillars comprised of Cr over SiO2; (b) Deep submicron slot pattern formed on photoresist mask; (c) Deep submicron slot on InP MQW wafer. All figures have the same scale.

Fig. 7
Fig. 7

(a)Output power of the laser as a function of the injection current; (b) Emission spectrum of the laser biased at 60mA.

Fig. 8
Fig. 8

(a) Emission spectrum of the laser of one channel; (b) Overlapped spectrum of all channels.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r t =r 1 t 2N exp(gNl)exp(jN2π/λnl) 1 t 2 exp(gl)exp(j2π/λnl)

Metrics