Abstract

We theoretically study femtosecond pulse generation by passive mode-locking of semiconductor disk lasers operating in the blue spectral range using metal nanocomposites as slow saturable absorbers. By using the relation for the nonlinear dielectric response of a layer of silica glass doped with spherical silver nanoparticles and the master equation for mode-locking, we investigate the dynamics of pulse formation and the achievable pulse parameters and predict the generation of pulses as short as 50 fs at 420 nm in such lasers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron.36(10), 949–960 (2004).
    [CrossRef]
  2. K.-H. Kim, A. Husakou, and J. Herrmann, “Saturable absorption in composites doped with metal nanoparticles,” Opt. Express18(21), 21918–21925 (2010).
    [CrossRef] [PubMed]
  3. V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B60(16), 11738–11746 (1999).
    [CrossRef]
  4. J. S. Melinger, V. D. Kleiman, D. McMorrow, F. Gröhn, B. J. Bauer, and E. Amis, “Ultrafast dynamics of gold-based nanocomposite materials,” J. Phys. Chem. B107(18), 3424–3431 (2003).
    [CrossRef]
  5. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
    [CrossRef]
  6. K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
    [CrossRef]
  7. A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett.33(7), 729–731 (2008).
    [CrossRef] [PubMed]
  8. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004).
    [CrossRef]
  9. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Elsevier, Amsterdam, 2006).
  10. O. G. Okhotnikov, Semiconductor Disk Laser (Wiley-VHC, Weinheim, 2010).
  11. U. Keller and A. C. Tropper, “Passively mode-locked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
    [CrossRef]
  12. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
    [CrossRef] [PubMed]
  13. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98(7), 071103 (2011).
    [CrossRef]
  14. E. J. Saarinen, R. Herda, and O. G. Okhotnikov, “Dynamics of pulse formation in mode-locked semiconductor disk lasers,” J. Opt. Soc. Am. B24(11), 2784–2790 (2007).
    [CrossRef]
  15. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B75(4-5), 445–451 (2002).
    [CrossRef]
  16. T.-C. Lu, J.-T. Chu, S.-W. Chen, B.-S. Cheng, H.-C. Kuo, and S.-C. Wang, “Lasing behavior, gain property, and strong coupling effects in GaN-based vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys.47(8), 6655–6659 (2008).
    [CrossRef]
  17. T.-C. Lu, B.-S. Cheng, and M.-C. Liu, “Temperature dependent gain characteristics in GaN-based vertical-cavity surface-emitting lasers,” Opt. Express17(22), 20149–20154 (2009).
    [CrossRef] [PubMed]
  18. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245(4920), 843–845 (1989).
    [CrossRef] [PubMed]
  19. K.-H. Kim, U. Griebner, and J. Herrmann, “Theory of passive mode locking of solid-state lasers using metal nanocomposites as slow saturable absorbers,” Opt. Lett.37(9), 1490–1492 (2012).
    [CrossRef] [PubMed]
  20. W. D. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).
  21. E. L. Falcão-Filho, C. B. de Araujo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, “Nonlinear susceptibility of colloids consisting of silver nanoparticles in carbon disulfide,” J. Opt. Soc. Am. B22(11), 2444–2449 (2005).
    [CrossRef]
  22. Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
    [CrossRef]
  23. I. V. Smetanin, P. P. Vasil’ev, and D. L. Boiko, “Theory of the ultrafast mode-locked GaN lasers in a large-signal regime,” Opt. Express19(18), 17114–17120 (2011).
    [CrossRef] [PubMed]
  24. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]

2012

2011

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98(7), 071103 (2011).
[CrossRef]

I. V. Smetanin, P. P. Vasil’ev, and D. L. Boiko, “Theory of the ultrafast mode-locked GaN lasers in a large-signal regime,” Opt. Express19(18), 17114–17120 (2011).
[CrossRef] [PubMed]

2010

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
[CrossRef] [PubMed]

K.-H. Kim, A. Husakou, and J. Herrmann, “Saturable absorption in composites doped with metal nanoparticles,” Opt. Express18(21), 21918–21925 (2010).
[CrossRef] [PubMed]

2009

2008

A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett.33(7), 729–731 (2008).
[CrossRef] [PubMed]

T.-C. Lu, J.-T. Chu, S.-W. Chen, B.-S. Cheng, H.-C. Kuo, and S.-C. Wang, “Lasing behavior, gain property, and strong coupling effects in GaN-based vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys.47(8), 6655–6659 (2008).
[CrossRef]

2007

2006

U. Keller and A. C. Tropper, “Passively mode-locked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

2005

2004

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron.36(10), 949–960 (2004).
[CrossRef]

2003

J. S. Melinger, V. D. Kleiman, D. McMorrow, F. Gröhn, B. J. Bauer, and E. Amis, “Ultrafast dynamics of gold-based nanocomposite materials,” J. Phys. Chem. B107(18), 3424–3431 (2003).
[CrossRef]

2002

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B75(4-5), 445–451 (2002).
[CrossRef]

2000

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

1999

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B60(16), 11738–11746 (1999).
[CrossRef]

1996

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

1989

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Aguiló, M.

Amis, E.

J. S. Melinger, V. D. Kleiman, D. McMorrow, F. Gröhn, B. J. Bauer, and E. Amis, “Ultrafast dynamics of gold-based nanocomposite materials,” J. Phys. Chem. B107(18), 3424–3431 (2003).
[CrossRef]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Auxier, J.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Bauer, B. J.

J. S. Melinger, V. D. Kleiman, D. McMorrow, F. Gröhn, B. J. Bauer, and E. Amis, “Ultrafast dynamics of gold-based nanocomposite materials,” J. Phys. Chem. B107(18), 3424–3431 (2003).
[CrossRef]

Bigot, J.-Y.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B60(16), 11738–11746 (1999).
[CrossRef]

Boiko, D. L.

Borrelli, N. F.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Carter-Coman, C.

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

Chen, S.-W.

T.-C. Lu, J.-T. Chu, S.-W. Chen, B.-S. Cheng, H.-C. Kuo, and S.-C. Wang, “Lasing behavior, gain property, and strong coupling effects in GaN-based vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys.47(8), 6655–6659 (2008).
[CrossRef]

Cheng, B.-S.

T.-C. Lu, B.-S. Cheng, and M.-C. Liu, “Temperature dependent gain characteristics in GaN-based vertical-cavity surface-emitting lasers,” Opt. Express17(22), 20149–20154 (2009).
[CrossRef] [PubMed]

T.-C. Lu, J.-T. Chu, S.-W. Chen, B.-S. Cheng, H.-C. Kuo, and S.-C. Wang, “Lasing behavior, gain property, and strong coupling effects in GaN-based vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys.47(8), 6655–6659 (2008).
[CrossRef]

Cho, W. B.

Chu, J.-T.

T.-C. Lu, J.-T. Chu, S.-W. Chen, B.-S. Cheng, H.-C. Kuo, and S.-C. Wang, “Lasing behavior, gain property, and strong coupling effects in GaN-based vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys.47(8), 6655–6659 (2008).
[CrossRef]

de Araujo, C. B.

Diagne, M.

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

Díaz, F.

Diddams, S. A.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Falcão-Filho, E. L.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Galembeck, A.

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron.36(10), 949–960 (2004).
[CrossRef]

Garnache, A.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B75(4-5), 445–451 (2002).
[CrossRef]

Griebner, U.

Gröhn, F.

J. S. Melinger, V. D. Kleiman, D. McMorrow, F. Gröhn, B. J. Bauer, and E. Amis, “Ultrafast dynamics of gold-based nanocomposite materials,” J. Phys. Chem. B107(18), 3424–3431 (2003).
[CrossRef]

Guille, J.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B60(16), 11738–11746 (1999).
[CrossRef]

Halté, V.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B60(16), 11738–11746 (1999).
[CrossRef]

Häring, R.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B75(4-5), 445–451 (2002).
[CrossRef]

Herda, R.

Herrmann, J.

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Hoogland, S.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B75(4-5), 445–451 (2002).
[CrossRef]

Husakou, A.

Jablonski, M.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Keller, U.

U. Keller and A. C. Tropper, “Passively mode-locked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B75(4-5), 445–451 (2002).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Kern, R. S.

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

Kim, K.-H.

Kish, F. A.

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

Kleiman, V. D.

J. S. Melinger, V. D. Kleiman, D. McMorrow, F. Gröhn, B. J. Bauer, and E. Amis, “Ultrafast dynamics of gold-based nanocomposite materials,” J. Phys. Chem. B107(18), 3424–3431 (2003).
[CrossRef]

Klopp, P.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98(7), 071103 (2011).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Krames, M. R.

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

Kuo, C. P.

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

Kuo, H.-C.

T.-C. Lu, J.-T. Chu, S.-W. Chen, B.-S. Cheng, H.-C. Kuo, and S.-C. Wang, “Lasing behavior, gain property, and strong coupling effects in GaN-based vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys.47(8), 6655–6659 (2008).
[CrossRef]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lee, S.

Liu, M.-C.

Lu, T.-C.

T.-C. Lu, B.-S. Cheng, and M.-C. Liu, “Temperature dependent gain characteristics in GaN-based vertical-cavity surface-emitting lasers,” Opt. Express17(22), 20149–20154 (2009).
[CrossRef] [PubMed]

T.-C. Lu, J.-T. Chu, S.-W. Chen, B.-S. Cheng, H.-C. Kuo, and S.-C. Wang, “Lasing behavior, gain property, and strong coupling effects in GaN-based vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys.47(8), 6655–6659 (2008).
[CrossRef]

Mateos, X.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

McMorrow, D.

J. S. Melinger, V. D. Kleiman, D. McMorrow, F. Gröhn, B. J. Bauer, and E. Amis, “Ultrafast dynamics of gold-based nanocomposite materials,” J. Phys. Chem. B107(18), 3424–3431 (2003).
[CrossRef]

Melinger, J. S.

J. S. Melinger, V. D. Kleiman, D. McMorrow, F. Gröhn, B. J. Bauer, and E. Amis, “Ultrafast dynamics of gold-based nanocomposite materials,” J. Phys. Chem. B107(18), 3424–3431 (2003).
[CrossRef]

Merle, J.-C.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B60(16), 11738–11746 (1999).
[CrossRef]

Nurmikko, A. V.

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

Okhotnikov, O. G.

Oliveira, M. M.

Osterman, S.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
[CrossRef] [PubMed]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Paschotta, R.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B75(4-5), 445–451 (2002).
[CrossRef]

Perakis, I.

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B60(16), 11738–11746 (1999).
[CrossRef]

Petrov, V.

Peyghambarian, N.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Pötting, S.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Pujol, M. C.

Quinlan, F.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
[CrossRef] [PubMed]

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Rivier, S.

Rotermund, F.

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron.36(10), 949–960 (2004).
[CrossRef]

Saarinen, E. J.

Schmidt, A.

Schneider, R. P.

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

Schülzgen, A.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Set, S. Y.

Smetanin, I. V.

Song, Y.-K.

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

Steinmeyer, G.

Stepanov, A. L.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron.36(10), 949–960 (2004).
[CrossRef]

Tanaka, Y.

Tropper, A.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B75(4-5), 445–451 (2002).
[CrossRef]

Tropper, A. C.

U. Keller and A. C. Tropper, “Passively mode-locked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron.36(10), 949–960 (2004).
[CrossRef]

Vasil’ev, P. P.

Wang, S.-C.

T.-C. Lu, J.-T. Chu, S.-W. Chen, B.-S. Cheng, H.-C. Kuo, and S.-C. Wang, “Lasing behavior, gain property, and strong coupling effects in GaN-based vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys.47(8), 6655–6659 (2008).
[CrossRef]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

Weyers, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98(7), 071103 (2011).
[CrossRef]

Wundke, K.

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Yaguchi, H.

Ycas, G.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
[CrossRef] [PubMed]

Yim, J. H.

Zarbin, A. J. G.

Zhou, H.

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

Zorn, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98(7), 071103 (2011).
[CrossRef]

Appl. Phys. B

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B75(4-5), 445–451 (2002).
[CrossRef]

Appl. Phys. Lett.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98(7), 071103 (2011).
[CrossRef]

K. Wundke, S. Pötting, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “PbS quantum-dot doped glasses for ultrashort-pulse generation,” Appl. Phys. Lett.76(1), 10–12 (2000).
[CrossRef]

Y.-K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett.76(13), 1662–1664 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. Chem. B

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

J. S. Melinger, V. D. Kleiman, D. McMorrow, F. Gröhn, B. J. Bauer, and E. Amis, “Ultrafast dynamics of gold-based nanocomposite materials,” J. Phys. Chem. B107(18), 3424–3431 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

T.-C. Lu, J.-T. Chu, S.-W. Chen, B.-S. Cheng, H.-C. Kuo, and S.-C. Wang, “Lasing behavior, gain property, and strong coupling effects in GaN-based vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys.47(8), 6655–6659 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, and T. Usmanov, “Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm,” Opt. Quantum Electron.36(10), 949–960 (2004).
[CrossRef]

Phys. Rep.

U. Keller and A. C. Tropper, “Passively mode-locked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

Phys. Rev. B

V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, “Electron dynamics in silver nanoparticles: comparison between thin films and glass embedded nanoparticles,” Phys. Rev. B60(16), 11738–11746 (1999).
[CrossRef]

Rev. Sci. Instrum.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
[CrossRef] [PubMed]

Science

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science245(4920), 843–845 (1989).
[CrossRef] [PubMed]

Other

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Elsevier, Amsterdam, 2006).

O. G. Okhotnikov, Semiconductor Disk Laser (Wiley-VHC, Weinheim, 2010).

W. D. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Transient transmittance of silica glass doped with spherical Ag NPs smaller than 10 nm at 430 nm for different pump pulse fluences; Ag NP filling factor: 10−4, thickness of composite layer: 1 μ m, pump pulse duration: 50 fs. (b)-(d) Pulse evolution in the GaN-based semiconductor disk laser (operating at 420 nm) passively mode-locked by silica glass doped with Ag nanospheres for GDD parameter D=100 fs2 and filling factor f=3.5× 10 3 . (b) Behavior of gain and loss during the pulse formation, (c) evolution of pulse energy on a µs-time scale, (d) pulse intensity and frequency shift during the pulse.

Fig. 2
Fig. 2

Pulse duration (a) and pulse energy (b) as a function of the group delay dispersion D for the GaN-based semiconductor disk laser at 420 nm passively mode-locked by Ag nanospheres doped silica glass: filling factor is f=3.5× 10 3 .

Fig. 3
Fig. 3

Dependencies of pulse duration and energy on the beam area on the saturable absorber for D=300 fs2 (a) and D=300 fs2 (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε m t = ε m ε m ( 0 ) τ ep + χ m ( 3 ) τ ee τ ep t | x( t' )E( t' ) | 2 exp( tt' τ ee )dt',
ε eff = ε h 1+2f( 1x ) 1f( 1x ) ,
T R A( T,t ) T =iD 2 A t 2 +[ ( 1iα )gl+ D g,f 2 A t 2 q( T,t ) ]A( T,t ),
g t = g g 0 τ g g | A( t ) | 2 E g ,
q( T,t )=i 4π λ L ε eff d,

Metrics