Abstract

We report on the investigation of four-wave mixing (FWM) in a long (1.3 mm) dispersion-engineered Gallium Indium Phosphide (GaInP) photonic crystal (PhC) waveguide. A comparison with a non-engineered design is made with respect to measured FWM efficiency maps. A striking different response is observed, in terms of dependence on the pump wavelength and the spectral detuning. The benefits and the limitations of both structures are discussed, in particular the trade-off between slow-light enhancement of the FWM efficiency and the conversion bandwidth. The time-resolved parametric conversion of short pulses at 10 GHz is also shown. Finally, the transmission capability of a 40 Gbit/s RZ signal is assessed through bit-error rate measurements, revealing error-free operation with only 1dB penalty.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Observation of soliton pulse compression in photonic crystal waveguides,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA10.
  2. J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature433(7028), 811–812 (2005).
    [CrossRef] [PubMed]
  3. A. Shinya, S. Matsuo, T. Yosia, E. Tanabe, T. Kuramochi, T. Sato, Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16(23), 19382–19387 (2008).
    [CrossRef] [PubMed]
  4. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
    [CrossRef]
  5. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
    [CrossRef]
  6. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19(5), 4458–4463 (2011).
    [CrossRef] [PubMed]
  7. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18(22), 22915–22927 (2010).
    [CrossRef] [PubMed]
  8. S. Combrié, P. Colman, C. Husko, Q. V. Tran, and A. De Rossi, “Advances in III-V based photonic crystals for integrated optical processing,” Proc. SPIE7608, 760815 (2010).
    [CrossRef]
  9. H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent Advances toward optical devices in semiconductor based photonic crystals,” Proc. IEEE94(5), 997–1023 (2006).
    [CrossRef]
  10. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
    [CrossRef]
  11. M. Soljačić, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B19(9), 2052–2059 (2002).
    [CrossRef]
  12. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
    [CrossRef]
  13. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett.36(9), 1728–1730 (2011).
    [CrossRef] [PubMed]
  14. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express14(4), 1658–1672 (2006).
    [CrossRef] [PubMed]
  15. L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B244(10), 3528–3539 (2007).
    [CrossRef]
  16. T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008).
    [CrossRef]
  17. C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt.12(10), 104003 (2010).
    [CrossRef]
  18. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
    [CrossRef]
  19. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17(4), 2944–2953 (2009).
    [CrossRef] [PubMed]
  20. S. Combrié, Q. V. Tran, A. de Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95(22), 221108 (2009).
    [CrossRef]
  21. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett.35(9), 1440–1442 (2010).
    [CrossRef] [PubMed]
  22. M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18(20), 21024–21029 (2010).
    [CrossRef] [PubMed]
  23. S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
    [CrossRef]
  24. P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20(12), 13108–13114 (2012).
    [CrossRef] [PubMed]
  25. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
    [CrossRef]
  26. M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
    [CrossRef] [PubMed]
  27. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
    [CrossRef] [PubMed]
  28. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express15(20), 13129–13138 (2007).
    [CrossRef] [PubMed]
  29. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B.72(16), 161318 (2005).
  30. C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Nontrivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express17(25), 22442–22451 (2009).
    [CrossRef] [PubMed]
  31. C. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett.36(12), 2239–2241 (2011).
    [CrossRef] [PubMed]
  32. K. Lengle, A. Akrout, M. Costa e Silva, L. Bramerie, J. C. Simon, S. Combrie, P. Colman, and A. de Rossi, “10 GHz demonstration of four wave mixing in photonic crystal waveguides,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper P2.24.
  33. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express17(20), 18340–18353 (2009).
    [CrossRef] [PubMed]
  34. M. R. Lamont, B. T. Kuhlmey, and C. M. de Sterke, “Multi-order dispersion engineering for optimal four-wave mixing,” Opt. Express16(10), 7551–7563 (2008).
    [CrossRef] [PubMed]
  35. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007).
    [CrossRef] [PubMed]
  36. P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. De Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered GaInP photonic crystal waveguides,” Opt. Lett.36(14), 2629–2631 (2011).
    [CrossRef] [PubMed]
  37. I. Cestier, A. Willinger, P. Colman, S. Combrié, G. Lehoucq, A. De Rossi, and G. Eisenstein, “Efficient parametric interactions in a low loss GaInP photonic crystal waveguide,” Opt. Lett.36(19), 3936–3938 (2011).
    [CrossRef] [PubMed]
  38. S. Mazoyer, A. Baron, J. P. Hugonin, P. Lalanne, and A. Melloni, “Slow pulses in disorder photonic-crystal waveguides,” Appl. Opt.50(31), G113–G117 (2011).
    [CrossRef]

2012

2011

2010

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt.12(10), 104003 (2010).
[CrossRef]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18(22), 22915–22927 (2010).
[CrossRef] [PubMed]

S. Combrié, P. Colman, C. Husko, Q. V. Tran, and A. De Rossi, “Advances in III-V based photonic crystals for integrated optical processing,” Proc. SPIE7608, 760815 (2010).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett.35(9), 1440–1442 (2010).
[CrossRef] [PubMed]

M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18(20), 21024–21029 (2010).
[CrossRef] [PubMed]

2009

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

S. Combrié, Q. V. Tran, A. de Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95(22), 221108 (2009).
[CrossRef]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express17(20), 18340–18353 (2009).
[CrossRef] [PubMed]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Nontrivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express17(25), 22442–22451 (2009).
[CrossRef] [PubMed]

2008

2007

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
[CrossRef]

L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B244(10), 3528–3539 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express15(20), 13129–13138 (2007).
[CrossRef] [PubMed]

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

2006

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express14(4), 1658–1672 (2006).
[CrossRef] [PubMed]

H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent Advances toward optical devices in semiconductor based photonic crystals,” Proc. IEEE94(5), 997–1023 (2006).
[CrossRef]

2005

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature433(7028), 811–812 (2005).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B.72(16), 161318 (2005).

2002

Andreani, L. C.

L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B244(10), 3528–3539 (2007).
[CrossRef]

Asakawa, K.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

Baron, A.

Beggs, D. M.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

Benisty, H.

H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent Advances toward optical devices in semiconductor based photonic crystals,” Proc. IEEE94(5), 997–1023 (2006).
[CrossRef]

Cassette, S.

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Cestier, I.

Checoury, X.

H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent Advances toward optical devices in semiconductor based photonic crystals,” Proc. IEEE94(5), 997–1023 (2006).
[CrossRef]

Chelnokov, A.

H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent Advances toward optical devices in semiconductor based photonic crystals,” Proc. IEEE94(5), 997–1023 (2006).
[CrossRef]

Colman, P.

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20(12), 13108–13114 (2012).
[CrossRef] [PubMed]

P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. De Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered GaInP photonic crystal waveguides,” Opt. Lett.36(14), 2629–2631 (2011).
[CrossRef] [PubMed]

C. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett.36(12), 2239–2241 (2011).
[CrossRef] [PubMed]

I. Cestier, A. Willinger, P. Colman, S. Combrié, G. Lehoucq, A. De Rossi, and G. Eisenstein, “Efficient parametric interactions in a low loss GaInP photonic crystal waveguide,” Opt. Lett.36(19), 3936–3938 (2011).
[CrossRef] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett.35(9), 1440–1442 (2010).
[CrossRef] [PubMed]

S. Combrié, P. Colman, C. Husko, Q. V. Tran, and A. De Rossi, “Advances in III-V based photonic crystals for integrated optical processing,” Proc. SPIE7608, 760815 (2010).
[CrossRef]

S. Combrié, Q. V. Tran, A. de Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95(22), 221108 (2009).
[CrossRef]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

Combrie, S.

H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent Advances toward optical devices in semiconductor based photonic crystals,” Proc. IEEE94(5), 997–1023 (2006).
[CrossRef]

Combrié, S.

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20(12), 13108–13114 (2012).
[CrossRef] [PubMed]

I. Cestier, A. Willinger, P. Colman, S. Combrié, G. Lehoucq, A. De Rossi, and G. Eisenstein, “Efficient parametric interactions in a low loss GaInP photonic crystal waveguide,” Opt. Lett.36(19), 3936–3938 (2011).
[CrossRef] [PubMed]

C. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett.36(12), 2239–2241 (2011).
[CrossRef] [PubMed]

P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. De Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered GaInP photonic crystal waveguides,” Opt. Lett.36(14), 2629–2631 (2011).
[CrossRef] [PubMed]

M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18(20), 21024–21029 (2010).
[CrossRef] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett.35(9), 1440–1442 (2010).
[CrossRef] [PubMed]

S. Combrié, P. Colman, C. Husko, Q. V. Tran, and A. De Rossi, “Advances in III-V based photonic crystals for integrated optical processing,” Proc. SPIE7608, 760815 (2010).
[CrossRef]

S. Combrié, Q. V. Tran, A. de Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95(22), 221108 (2009).
[CrossRef]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Nontrivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express17(25), 22442–22451 (2009).
[CrossRef] [PubMed]

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Corcoran, B.

De Rossi, A.

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20(12), 13108–13114 (2012).
[CrossRef] [PubMed]

C. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett.36(12), 2239–2241 (2011).
[CrossRef] [PubMed]

I. Cestier, A. Willinger, P. Colman, S. Combrié, G. Lehoucq, A. De Rossi, and G. Eisenstein, “Efficient parametric interactions in a low loss GaInP photonic crystal waveguide,” Opt. Lett.36(19), 3936–3938 (2011).
[CrossRef] [PubMed]

P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. De Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered GaInP photonic crystal waveguides,” Opt. Lett.36(14), 2629–2631 (2011).
[CrossRef] [PubMed]

M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18(20), 21024–21029 (2010).
[CrossRef] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett.35(9), 1440–1442 (2010).
[CrossRef] [PubMed]

S. Combrié, P. Colman, C. Husko, Q. V. Tran, and A. De Rossi, “Advances in III-V based photonic crystals for integrated optical processing,” Proc. SPIE7608, 760815 (2010).
[CrossRef]

S. Combrié, Q. V. Tran, A. de Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95(22), 221108 (2009).
[CrossRef]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Nontrivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express17(25), 22442–22451 (2009).
[CrossRef] [PubMed]

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

de Sterke, C. M.

de Sterke, M.

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt.12(10), 104003 (2010).
[CrossRef]

Ebnali-Heidari, M.

Eckhouse, V.

Eggleton, B. J.

Eisenstein, G.

Engelen, R. J. P.

Fan, S. H.

Foster, M. A.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Gabet, R.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Gaeta, A. L.

Gerace, D.

L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B244(10), 3528–3539 (2007).
[CrossRef]

Grillet, C.

Hamel, P.

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Hughes, S.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B.72(16), 161318 (2005).

Hugonin, J. P.

Husko, C.

C. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett.36(12), 2239–2241 (2011).
[CrossRef] [PubMed]

S. Combrié, P. Colman, C. Husko, Q. V. Tran, and A. De Rossi, “Advances in III-V based photonic crystals for integrated optical processing,” Proc. SPIE7608, 760815 (2010).
[CrossRef]

S. Combrié, Q. V. Tran, A. de Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95(22), 221108 (2009).
[CrossRef]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Nontrivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express17(25), 22442–22451 (2009).
[CrossRef] [PubMed]

Ibanescu, M.

Ikeda, N.

Ippen, E.

Jaouen, Y.

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Jaouën, Y.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Kakitsuka,

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Korterik, J. P.

Krauss, T. F.

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19(5), 4458–4463 (2011).
[CrossRef] [PubMed]

B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett.36(9), 1728–1730 (2011).
[CrossRef] [PubMed]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18(22), 22915–22927 (2010).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008).
[CrossRef]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
[CrossRef]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express15(20), 13129–13138 (2007).
[CrossRef] [PubMed]

Kuhlmey, B. T.

Kuipers, L.

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B.72(16), 161318 (2005).

Kuramochi, T.

Lalanne, P.

Lamont, M. R.

Lehoucq, G.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Li, J.

Lipson, M.

Lourtioz, J. M.

H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent Advances toward optical devices in semiconductor based photonic crystals,” Proc. IEEE94(5), 997–1023 (2006).
[CrossRef]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

A. Shinya, S. Matsuo, T. Yosia, E. Tanabe, T. Kuramochi, T. Sato, Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16(23), 19382–19387 (2008).
[CrossRef] [PubMed]

Mazoyer, S.

Melloni, A.

S. Mazoyer, A. Baron, J. P. Hugonin, P. Lalanne, and A. Melloni, “Slow pulses in disorder photonic-crystal waveguides,” Appl. Opt.50(31), G113–G117 (2011).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

Mok, J. T.

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature433(7028), 811–812 (2005).
[CrossRef] [PubMed]

Monat, C.

Moravvej-Farshi, M. K.

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

A. Shinya, S. Matsuo, T. Yosia, E. Tanabe, T. Kuramochi, T. Sato, Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16(23), 19382–19387 (2008).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B.72(16), 161318 (2005).

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

O’Brien, D.

O’Faolain, L.

Patterson, M.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

Pelusi, M. D.

Raineri, F.

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B.72(16), 161318 (2005).

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Rey, I. H.

Salem, R.

Santagiustina, M.

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

A. Shinya, S. Matsuo, T. Yosia, E. Tanabe, T. Kuramochi, T. Sato, Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16(23), 19382–19387 (2008).
[CrossRef] [PubMed]

Schulz, S. A.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

Settle, M. D.

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

A. Shinya, S. Matsuo, T. Yosia, E. Tanabe, T. Kuramochi, T. Sato, Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16(23), 19382–19387 (2008).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B.72(16), 161318 (2005).

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Soljacic, M.

Someda, C. G.

Sugimoto, Y.

Talneau, A.

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Tanabe, E.

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Tran, N. V.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

Tran, Q. V.

S. Combrié, P. Colman, C. Husko, Q. V. Tran, and A. De Rossi, “Advances in III-V based photonic crystals for integrated optical processing,” Proc. SPIE7608, 760815 (2010).
[CrossRef]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

S. Combrié, Q. V. Tran, A. de Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95(22), 221108 (2009).
[CrossRef]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Nontrivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express17(25), 22442–22451 (2009).
[CrossRef] [PubMed]

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Turner, A. C.

Vadalà, G.

van Hulst, N. F.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B.72(16), 161318 (2005).

Watanabe, Y.

Weidner, E.

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

White, T. P.

Willinger, A.

Wong, C. W.

Yosia, T.

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Yuan, X.

Appl. Opt.

Appl. Phys. Lett.

S. Combrié, Q. V. Tran, A. de Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95(22), 221108 (2009).
[CrossRef]

S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett.90(23), 231104 (2007).
[CrossRef]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

J. Opt.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt.12(10), 104003 (2010).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
[CrossRef]

Nat. Photonics

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008).
[CrossRef]

Nature

J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature433(7028), 811–812 (2005).
[CrossRef] [PubMed]

Opt. Express

A. Shinya, S. Matsuo, T. Yosia, E. Tanabe, T. Kuramochi, T. Sato, Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express16(23), 19382–19387 (2008).
[CrossRef] [PubMed]

J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19(5), 4458–4463 (2011).
[CrossRef] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18(22), 22915–22927 (2010).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express14(4), 1658–1672 (2006).
[CrossRef] [PubMed]

M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18(20), 21024–21029 (2010).
[CrossRef] [PubMed]

P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express20(12), 13108–13114 (2012).
[CrossRef] [PubMed]

L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express15(20), 13129–13138 (2007).
[CrossRef] [PubMed]

C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Nontrivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express17(25), 22442–22451 (2009).
[CrossRef] [PubMed]

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express17(20), 18340–18353 (2009).
[CrossRef] [PubMed]

M. R. Lamont, B. T. Kuhlmey, and C. M. de Sterke, “Multi-order dispersion engineering for optimal four-wave mixing,” Opt. Express16(10), 7551–7563 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. B.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B.72(16), 161318 (2005).

Phys. Status Solidi B

L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B244(10), 3528–3539 (2007).
[CrossRef]

Proc. IEEE

H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent Advances toward optical devices in semiconductor based photonic crystals,” Proc. IEEE94(5), 997–1023 (2006).
[CrossRef]

Proc. SPIE

S. Combrié, P. Colman, C. Husko, Q. V. Tran, and A. De Rossi, “Advances in III-V based photonic crystals for integrated optical processing,” Proc. SPIE7608, 760815 (2010).
[CrossRef]

Other

P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Observation of soliton pulse compression in photonic crystal waveguides,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA10.

K. Lengle, A. Akrout, M. Costa e Silva, L. Bramerie, J. C. Simon, S. Combrie, P. Colman, and A. de Rossi, “10 GHz demonstration of four wave mixing in photonic crystal waveguides,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper P2.24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

PhC waveguide SEM pictures: self-standing membrane with triangular lattice of holes (a-b), mode adapting structure (c) (source: Thales TRT).

Fig. 2
Fig. 2

(a, b) Group index profiles (continuous line, squares) and GVD profiles (dotted line, triangles) of the tested waveguides, with associated transmission profiles (c, d).

Fig. 3
Fig. 3

Experimental setup for time response limitation investigation.

Fig. 4
Fig. 4

FWM in a “low group index” PhC waveguide. (a) transmitted spectra; colors are related to the pump-probe detuning, the black curve represents the output without CW signal and (b) Time-resolved traces using an optical sampling oscilloscope.

Fig. 5
Fig. 5

Experimental setup for FWM map characterization with 100 ps pulses at 500 MHz.

Fig. 6
Fig. 6

(a) FWM efficiencies for ‘low group index’ (gray curve) and dispersion-engineered (black curve) waveguides as a function of pump wavelength when the pump-probe detuning is 0.65 nm; (b) FWM efficiency enhancement between both devices as a function of pump wavelength.

Fig. 7
Fig. 7

FWM efficiency map for ‘low group index’ (a) and for dispersion-engineered (b) waveguides

Fig. 8
Fig. 8

Fiber to fiber transmission and input / output spectra in both propagation regimes, linked to group index profile of the waveguide.

Fig. 9
Fig. 9

Bit error rate measurements of 40 Gbit/s RZ signal transmission through PhC waveguide with associated eye diagrams.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P NL = 3 2 ε 0 χ ( 3 ) E pump 2 E probe * e i( Δ k L Δωt )
Δω=2 ω pump ω probe ω idler
Δ k L =2 k pump k probe k idler
Δλ= λ probe λ pump
η FWM P idler ¯ (out) P probe ¯ (in)
S= v φ v g S= n g n 0
η FWM = P idler ¯ (out) P probe ¯ (in) = ( γ P pump ¯ g sinh( gL ) ) 2 e αL
g= ( γ P pump ¯ ) 2 ( Δk 2 ) 2
Δk=Δ k L +Δ k NL
Δ k L ( Δω ) 2 β 2 + 1 12 ( Δω ) 4 β 4
Ω FWM 4π | β 2 |L
Δλ Ω FWM . λ 2 2πc

Metrics