Abstract

We demonstrate the use of optical pumping of kinetically ultracold NaCs to cool an initial vibrational distribution of electronic ground state molecules X1Σ+(v ≥ 4) into the vibrational ground state X1Σ+(v=0). Our approach is based on the use of simple, commercially available multimode diode lasers selected to optically pump population into X1Σ+(v=0). We investigate the impact of the cooling process on the rotational state distribution of the vibrational ground state, and observe that an initial distribution, Jinitial=0–2 is only moderately affected resulting in Jfinal=0–4. This method provides an inexpensive approach to creation of vibrational ground state ultracold polar molecules.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes: Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
    [CrossRef]
  2. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
    [CrossRef] [PubMed]
  3. W. D. Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
    [CrossRef]
  4. M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321(5886), 232–234 (2008).
    [CrossRef] [PubMed]
  5. D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
    [CrossRef]
  6. P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys. 6, 271–274 (2010).
    [CrossRef]
  7. T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys. 6, 275–278 (2010).
    [CrossRef]
  8. H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. 98, 060404 (2007).
    [CrossRef] [PubMed]
  9. G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. 100, 050402 (2008).
    [CrossRef] [PubMed]
  10. L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
    [CrossRef]
  11. S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
    [CrossRef]
  12. J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett. 94, 203001 (2005).
    [CrossRef] [PubMed]
  13. K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
    [CrossRef] [PubMed]
  14. J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
    [CrossRef] [PubMed]
  15. P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+(v″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84, 061401 (2011).
    [CrossRef]
  16. O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B 39, S929–S943 (2006).
    [CrossRef]
  17. A. Grochola, P. Kowalczyk, and W. Jastrzebski, “Investigation of the B1Π state in NaCs by polarisation labeling spectroscopy,” Chem. Phys. Lett. 497, 22–25 (2010).
    [CrossRef]
  18. J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A 79(1), 012508 (2009).
    [CrossRef]
  19. A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A 84, 012507 (2011).
    [CrossRef]
  20. A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 62P3/2 asymptote,” Phys. Chem. Chem. Phys. 13, 18887–18892 (2011).
    [CrossRef] [PubMed]
  21. P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
    [CrossRef]
  22. R. J. Le Roy, Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (2007).
    [PubMed]
  23. D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
    [CrossRef]
  24. M. Aymar and O. Dulieu, “Calculation of accurate permanent dipole moments of the lowest 1,3Σ+ states of heteronuclear alkali dimers using extended basis sets,” J. Chem. Phys. 122, 204302 (2005).
    [CrossRef] [PubMed]
  25. Private Communication with A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber.
  26. Purchased from Intense Laser Co.
  27. Purchased from Thorlabs.
  28. R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. 128, 244316 (2008).
    [CrossRef] [PubMed]
  29. A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A 81, 042509 (2010).
    [CrossRef]
  30. J. T. Kim, Y. Lee, and A. V. Stolyarov, “Quasi-relativistic treatment of the low-lying KCs states,” J. Mol. Spec. 256, 57–67 (2009).
    [CrossRef]

2011 (3)

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+(v″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84, 061401 (2011).
[CrossRef]

A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A 84, 012507 (2011).
[CrossRef]

A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 62P3/2 asymptote,” Phys. Chem. Chem. Phys. 13, 18887–18892 (2011).
[CrossRef] [PubMed]

2010 (6)

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A 81, 042509 (2010).
[CrossRef]

A. Grochola, P. Kowalczyk, and W. Jastrzebski, “Investigation of the B1Π state in NaCs by polarisation labeling spectroscopy,” Chem. Phys. Lett. 497, 22–25 (2010).
[CrossRef]

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[CrossRef]

P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys. 6, 271–274 (2010).
[CrossRef]

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys. 6, 275–278 (2010).
[CrossRef]

2009 (4)

D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
[CrossRef]

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A 79(1), 012508 (2009).
[CrossRef]

J. T. Kim, Y. Lee, and A. V. Stolyarov, “Quasi-relativistic treatment of the low-lying KCs states,” J. Mol. Spec. 256, 57–67 (2009).
[CrossRef]

2008 (5)

R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. 128, 244316 (2008).
[CrossRef] [PubMed]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. 100, 050402 (2008).
[CrossRef] [PubMed]

M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321(5886), 232–234 (2008).
[CrossRef] [PubMed]

2007 (2)

H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. 98, 060404 (2007).
[CrossRef] [PubMed]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[CrossRef]

2006 (1)

O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B 39, S929–S943 (2006).
[CrossRef]

2005 (2)

J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett. 94, 203001 (2005).
[CrossRef] [PubMed]

M. Aymar and O. Dulieu, “Calculation of accurate permanent dipole moments of the lowest 1,3Σ+ states of heteronuclear alkali dimers using extended basis sets,” J. Chem. Phys. 122, 204302 (2005).
[CrossRef] [PubMed]

1998 (1)

W. D. Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[CrossRef]

1988 (1)

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

1950 (1)

A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes: Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
[CrossRef]

Allegrini, M.

D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
[CrossRef]

M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321(5886), 232–234 (2008).
[CrossRef] [PubMed]

Arimondo, E.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Ashbaugh, C.

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[CrossRef]

Aspect, A.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Aymar, M.

M. Aymar and O. Dulieu, “Calculation of accurate permanent dipole moments of the lowest 1,3Σ+ states of heteronuclear alkali dimers using extended basis sets,” J. Chem. Phys. 122, 204302 (2005).
[CrossRef] [PubMed]

Bergeman, T.

J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett. 94, 203001 (2005).
[CrossRef] [PubMed]

Bigelow, N. P.

A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 62P3/2 asymptote,” Phys. Chem. Chem. Phys. 13, 18887–18892 (2011).
[CrossRef] [PubMed]

A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A 84, 012507 (2011).
[CrossRef]

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+(v″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84, 061401 (2011).
[CrossRef]

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

Bomble, L.

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[CrossRef]

Bouloufa, N.

M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321(5886), 232–234 (2008).
[CrossRef] [PubMed]

Büchler, H. P.

H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. 98, 060404 (2007).
[CrossRef] [PubMed]

Chotia, A.

M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321(5886), 232–234 (2008).
[CrossRef] [PubMed]

Cohen-Tannoudji, C.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Comparat, D.

D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
[CrossRef]

M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321(5886), 232–234 (2008).
[CrossRef] [PubMed]

de Miranda, M. H. G.

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

Deiglmayr, J.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

DeMille, D.

J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett. 94, 203001 (2005).
[CrossRef] [PubMed]

Demler, E.

H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. 98, 060404 (2007).
[CrossRef] [PubMed]

Desouter-Lecomte, M.

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[CrossRef]

Docenko, O.

O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B 39, S929–S943 (2006).
[CrossRef]

Drewsen, M.

P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys. 6, 271–274 (2010).
[CrossRef]

Drozdova, A. N.

J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A 79(1), 012508 (2009).
[CrossRef]

Dulieu, O.

M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321(5886), 232–234 (2008).
[CrossRef] [PubMed]

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

M. Aymar and O. Dulieu, “Calculation of accurate permanent dipole moments of the lowest 1,3Σ+ states of heteronuclear alkali dimers using extended basis sets,” J. Chem. Phys. 122, 204302 (2005).
[CrossRef] [PubMed]

Duncker, H.

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys. 6, 275–278 (2010).
[CrossRef]

Ernsting, I.

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys. 6, 275–278 (2010).
[CrossRef]

Eyler, E. E.

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[CrossRef]

Ferber, R.

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A 81, 042509 (2010).
[CrossRef]

J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A 79(1), 012508 (2009).
[CrossRef]

R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. 128, 244316 (2008).
[CrossRef] [PubMed]

O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B 39, S929–S943 (2006).
[CrossRef]

Fioretti, A.

D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
[CrossRef]

Ghesquière, P.

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[CrossRef]

Glück, C.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

Gould, P. L.

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[CrossRef]

Griessner, A.

G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. 100, 050402 (2008).
[CrossRef] [PubMed]

Grochola, A.

A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A 84, 012507 (2011).
[CrossRef]

A. Grochola, P. Kowalczyk, and W. Jastrzebski, “Investigation of the B1Π state in NaCs by polarisation labeling spectroscopy,” Chem. Phys. Lett. 497, 22–25 (2010).
[CrossRef]

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

Haimberger, C.

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

Hansen, A. K.

P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys. 6, 271–274 (2010).
[CrossRef]

Haruza, M.

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+(v″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84, 061401 (2011).
[CrossRef]

Højbjerre, K.

P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys. 6, 271–274 (2010).
[CrossRef]

Horchani, R.

D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
[CrossRef]

Jastrzebski, W.

A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A 84, 012507 (2011).
[CrossRef]

A. Grochola, P. Kowalczyk, and W. Jastrzebski, “Investigation of the B1Π state in NaCs by polarisation labeling spectroscopy,” Chem. Phys. Lett. 497, 22–25 (2010).
[CrossRef]

Jin, D. S.

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

Julienne, P.

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

Kaiser, R.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Kastler, A.

A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes: Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
[CrossRef]

Kim, J. T.

J. T. Kim, Y. Lee, and A. V. Stolyarov, “Quasi-relativistic treatment of the low-lying KCs states,” J. Mol. Spec. 256, 57–67 (2009).
[CrossRef]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[CrossRef]

Klincare, I.

A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A 81, 042509 (2010).
[CrossRef]

R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. 128, 244316 (2008).
[CrossRef] [PubMed]

Knöckel, H.

R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. 128, 244316 (2008).
[CrossRef] [PubMed]

O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B 39, S929–S943 (2006).
[CrossRef]

Kotochigova, S.

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

Kowalczyk, P.

A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A 84, 012507 (2011).
[CrossRef]

A. Grochola, P. Kowalczyk, and W. Jastrzebski, “Investigation of the B1Π state in NaCs by polarisation labeling spectroscopy,” Chem. Phys. Lett. 497, 22–25 (2010).
[CrossRef]

Kruzins, A.

A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A 81, 042509 (2010).
[CrossRef]

Lange, J.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

Le Roy, R. J.

R. J. Le Roy, Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (2007).
[PubMed]

Lee, Y.

J. T. Kim, Y. Lee, and A. V. Stolyarov, “Quasi-relativistic treatment of the low-lying KCs states,” J. Mol. Spec. 256, 57–67 (2009).
[CrossRef]

Li, X.

D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
[CrossRef]

Lukin, M.

H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. 98, 060404 (2007).
[CrossRef] [PubMed]

Micheli, A.

G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. 100, 050402 (2008).
[CrossRef] [PubMed]

H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. 98, 060404 (2007).
[CrossRef] [PubMed]

Mörtlbauer, K.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

Neukirch, A.

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

Neyenhuis, B.

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

Ni, K.-K.

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

Nikolayeva, O.

A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A 81, 042509 (2010).
[CrossRef]

R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. 128, 244316 (2008).
[CrossRef] [PubMed]

Ortner, M.

G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. 100, 050402 (2008).
[CrossRef] [PubMed]

Ospelkaus, S.

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

Pashov, A.

R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. 128, 244316 (2008).
[CrossRef] [PubMed]

O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B 39, S929–S943 (2006).
[CrossRef]

Pazyuk, E. A.

A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A 81, 042509 (2010).
[CrossRef]

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A 79(1), 012508 (2009).
[CrossRef]

Pe’er, A.

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

Pellegrini, P.

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[CrossRef]

Phillips, W. D.

W. D. Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[CrossRef]

Pichler, M.

D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
[CrossRef]

Pillet, P.

D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
[CrossRef]

M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321(5886), 232–234 (2008).
[CrossRef] [PubMed]

Prokof’ev, N.

H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. 98, 060404 (2007).
[CrossRef] [PubMed]

Pupillo, G.

G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. 100, 050402 (2008).
[CrossRef] [PubMed]

H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. 98, 060404 (2007).
[CrossRef] [PubMed]

Repp, M.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

Roth, B.

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys. 6, 275–278 (2010).
[CrossRef]

Sage, J. M.

J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett. 94, 203001 (2005).
[CrossRef] [PubMed]

Sainis, S.

J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett. 94, 203001 (2005).
[CrossRef] [PubMed]

Schiller, S.

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys. 6, 275–278 (2010).
[CrossRef]

Schneider, T.

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys. 6, 275–278 (2010).
[CrossRef]

Skyt, P. S.

P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys. 6, 271–274 (2010).
[CrossRef]

Sofikitis, D.

D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
[CrossRef]

Staanum, P. F.

P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys. 6, 271–274 (2010).
[CrossRef]

Stolyarov, A. V.

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A 81, 042509 (2010).
[CrossRef]

J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A 79(1), 012508 (2009).
[CrossRef]

J. T. Kim, Y. Lee, and A. V. Stolyarov, “Quasi-relativistic treatment of the low-lying KCs states,” J. Mol. Spec. 256, 57–67 (2009).
[CrossRef]

Stwalley, W. C.

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[CrossRef]

Szczepkowski, J.

A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A 84, 012507 (2011).
[CrossRef]

Tamanis, M.

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A 81, 042509 (2010).
[CrossRef]

J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A 79(1), 012508 (2009).
[CrossRef]

R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. 128, 244316 (2008).
[CrossRef] [PubMed]

O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B 39, S929–S943 (2006).
[CrossRef]

Tiemann, E.

R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. 128, 244316 (2008).
[CrossRef] [PubMed]

O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B 39, S929–S943 (2006).
[CrossRef]

Vansteenkiste, N.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Viteau, M.

M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321(5886), 232–234 (2008).
[CrossRef] [PubMed]

Wakim, A.

A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 62P3/2 asymptote,” Phys. Chem. Chem. Phys. 13, 18887–18892 (2011).
[CrossRef] [PubMed]

A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A 84, 012507 (2011).
[CrossRef]

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+(v″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84, 061401 (2011).
[CrossRef]

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

Wang, D.

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[CrossRef]

Wang, D. W.

G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. 100, 050402 (2008).
[CrossRef] [PubMed]

Weidemüller, M.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

Wester, R.

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

Ye, J.

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

Zabawa, P.

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+(v″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84, 061401 (2011).
[CrossRef]

A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A 84, 012507 (2011).
[CrossRef]

A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 62P3/2 asymptote,” Phys. Chem. Chem. Phys. 13, 18887–18892 (2011).
[CrossRef] [PubMed]

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

Zaharova, J.

J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A 79(1), 012508 (2009).
[CrossRef]

O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B 39, S929–S943 (2006).
[CrossRef]

Zirbel, B. N. J. J.

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

Zoller, P.

G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. 100, 050402 (2008).
[CrossRef] [PubMed]

H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. 98, 060404 (2007).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

A. Grochola, P. Kowalczyk, and W. Jastrzebski, “Investigation of the B1Π state in NaCs by polarisation labeling spectroscopy,” Chem. Phys. Lett. 497, 22–25 (2010).
[CrossRef]

Faraday Discuss. (1)

S. Ospelkaus, K.-K. Ni, M. H. G. de Miranda, B. Neyenhuis, D. Wang, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “Ultracold polar molecules near quantum degeneracy,” Faraday Discuss. 142, 351–359 (2009).
[CrossRef]

J. Chem. Phys. (2)

M. Aymar and O. Dulieu, “Calculation of accurate permanent dipole moments of the lowest 1,3Σ+ states of heteronuclear alkali dimers using extended basis sets,” J. Chem. Phys. 122, 204302 (2005).
[CrossRef] [PubMed]

R. Ferber, I. Klincare, O. Nikolayeva, M. Tamanis, H. Knöckel, E. Tiemann, and A. Pashov, “The ground electronic state of KCs studied by Fourier transform spectroscopy,” J. Chem. Phys. 128, 244316 (2008).
[CrossRef] [PubMed]

J. Mol. Spec. (1)

J. T. Kim, Y. Lee, and A. V. Stolyarov, “Quasi-relativistic treatment of the low-lying KCs states,” J. Mol. Spec. 256, 57–67 (2009).
[CrossRef]

J. Phys. B (1)

O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov, H. Knöckel, and E. Tiemann, “The coupling of the X1Σ+ and a3Σ+ states of the atom pair Na + Cs and modeling cold collisions,” J. Phys. B 39, S929–S943 (2006).
[CrossRef]

J. Phys. Radium (1)

A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes: Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950).
[CrossRef]

Nat. Phys. (2)

P. F. Staanum, K. Højbjerre, P. S. Skyt, A. K. Hansen, and M. Drewsen, “Rotational laser cooling of vibrationally and translationally cold molecular ions,” Nat. Phys. 6, 271–274 (2010).
[CrossRef]

T. Schneider, B. Roth, H. Duncker, I. Ernsting, and S. Schiller, “All-optical preparation of molecular ions in the rovibrational ground state,” Nat. Phys. 6, 275–278 (2010).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

A. Wakim, P. Zabawa, and N. P. Bigelow, “Photoassociation studies of ultracold NaCs from the Cs 62P3/2 asymptote,” Phys. Chem. Chem. Phys. 13, 18887–18892 (2011).
[CrossRef] [PubMed]

Phys. Rev. A (8)

P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, “Near-dissociation photoassociative production of deeply bound nacs molecules,” Phys. Rev. A 82, 040501 (2010).
[CrossRef]

D. Wang, J. T. Kim, C. Ashbaugh, E. E. Eyler, P. L. Gould, and W. C. Stwalley, “Rotationally resolved depletion spectroscopy of ultracold KRb molecules,” Phys. Rev. A 75(3), 032511 (2007).
[CrossRef]

A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis, R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, “Fourier-transform spectroscopy and coupled-channels deperturbation treatment of the A1Σ+ – b3Π complex of KCs,” Phys. Rev. A 81, 042509 (2010).
[CrossRef]

D. Sofikitis, R. Horchani, X. Li, M. Pichler, M. Allegrini, A. Fioretti, D. Comparat, and P. Pillet, “Vibrational cooling of cesium molecules using noncoherent broadband light,” Phys. Rev. A 80, 051401 (2009).
[CrossRef]

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[CrossRef]

J. Zaharova, M. Tamanis, R. Ferber, A. N. Drozdova, E. A. Pazyuk, and A. V. Stolyarov, “Solution of the fully-mixed-state problem: Direct deperturbation analysis of the A1Σ+– b3Π complex in a NaCs dimer,” Phys. Rev. A 79(1), 012508 (2009).
[CrossRef]

A. Grochola, P. Kowalczyk, J. Szczepkowski, W. Jastrzebski, A. Wakim, P. Zabawa, and N. P. Bigelow, “Spin-forbidden c3Σ+(Ω=1)←X1Σ+ transition in NaCs: Investigation of the Ω=1 state in hot and cold environments,” Phys. Rev. A 84, 012507 (2011).
[CrossRef]

P. Zabawa, A. Wakim, M. Haruza, and N. P. Bigelow, “Formation of ultracold X1Σ+(v″=0) NaCs molecules via coupled photoassociation channels,” Phys. Rev. A 84, 061401 (2011).
[CrossRef]

Phys. Rev. Lett. (5)

J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, “Formation of ultracold polar molecules in the rovibrational ground state,” Phys. Rev. Lett. 101(13), 133004 (2008).
[CrossRef] [PubMed]

J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, “Optical production of ultracold polar molecules,” Phys. Rev. Lett. 94, 203001 (2005).
[CrossRef] [PubMed]

H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, and P. Zoller, “Strongly correlated 2d quantum phases with cold polar molecules: Controlling the shape of the interaction potential,” Phys. Rev. Lett. 98, 060404 (2007).
[CrossRef] [PubMed]

G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, “Cold atoms and molecules in self-assembled dipolar lattices,” Phys. Rev. Lett. 100, 050402 (2008).
[CrossRef] [PubMed]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826–829 (1988).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

W. D. Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[CrossRef]

Science (2)

M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, “Optical pumping and vibrational cooling of molecules,” Science 321(5886), 232–234 (2008).
[CrossRef] [PubMed]

K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. N. J. J. Zirbel, S. Kotochigova, P. Julienne, D. S. Jin, and J. Ye, “A high phase-space-density gas of polar molecules,” Science 322, 231–235 (2008).
[CrossRef] [PubMed]

Other (4)

R. J. Le Roy, Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (2007).
[PubMed]

Private Communication with A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber.

Purchased from Intense Laser Co.

Purchased from Thorlabs.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical pumping pathways in NaCs. Ground state molecules are pumped through the A1Σ+–b3Π complex using broadband light that is not energetic enough to drive molecules out of X1Σ+(v=0). Excited state molecules decay to the ground state and population in X1Σ+(v=0) accumulates. The experimentally determined PECs are from [1619], shown with exaggerated vibrational level positions.

Fig. 2
Fig. 2

Relative intensities of the OP diodes. (a) Combined spectral profile of the four 980nm diodes. Vertical line indicates the transition wavelength to drive population out of X1Σ+(v=0). (b) The 1206nm diode spectral profile.

Fig. 3
Fig. 3

Three photon REMPI scans revealing populated vibrational levels in the singlet ground state. (a) Initial distribution of vibrational levels with X1Σ+(v=4–6,19) labeled. (b) Final distribution after the sample is optically pumped. X1Σ+(v=0–2) are populated. Vibrational assignments are experimentally confirmed using pulsed depletion spectroscopy [21]. The wavelength is calibrated against known atomic transitions to within 0.2 cm−1.

Fig. 4
Fig. 4

Ground state rotational levels are labeled using cw depletion and transitions are known from [25]. Dashed areas indicate range of noise in the signal. (a) Initial ground state rotational population distribution. Solid (dotted) line shows population created by (4)Ω=1 PA resonance at 960 GHz through J=1 (J=2). Note both the R and P transitions are shown out of J=1 in the ground state. (b) Final rotational population distribution by optically pumping the initial distribution created by the J=1 PA resonance at 32 GHz. X1Σ+(v=0, J=0) is populated (scan is vertically shifted 1200 units). The J=1 arrow is grayed indicating uncertainty of population in this state. The frequency is calibrated with a wavemeter known to within 0.3 GHz.

Fig. 5
Fig. 5

Results of a monte-carlo simulation of an initial rotational distribution (striped) driven between 1 and 6 cycles (black) or 3 and 8 cycles (gray) weighted by the Hönl-London factors for ΔΛ=0 transitions. The final rotational distribution for 1–6 cycles (black) closely resembles experimental results.

Metrics