Abstract

In this paper a new phase contrast method with fringe contrast adjustable is proposed. In the Fourier plane of the object wave, two Ronchi gratings i.e., a central grating and a surrounding grating, are used to modulate the phases of the undiffracted and diffracted components, respectively. By loading the two gratings separately on spatial light modulator, the undiffracted and diffracted components can be measured independently, which simplify greatly the reconstruction process. Besides, the fringe contrast of the phase contrast interferogram can be adjusted by changing the modulation depth of the two gratings. The feasibility of the proposed method is verified by theoretical analysis and experiment.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006).
    [CrossRef] [PubMed]
  2. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.37(6), 1094–1096 (2012).
    [CrossRef] [PubMed]
  3. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express14(12), 5168–5177 (2006).
    [CrossRef] [PubMed]
  4. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett.35(5), 712–714 (2010).
    [CrossRef] [PubMed]
  5. G. Popescu, Y. K. Park, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express14(18), 8263–8268 (2006).
    [CrossRef] [PubMed]
  6. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica9(7Part I), 686–698 (1942).
    [CrossRef]
  7. R. Liang, J. K. Erwin, and M. Mansuripur, “Variation on Zernike’s phase-contrast microscope,” Appl. Opt.39(13), 2152–2158 (2000).
    [CrossRef] [PubMed]
  8. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M.-U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express19(2), 1016–1026 (2011).
    [CrossRef] [PubMed]
  9. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Phase contrast microscopy with full numerical aperture illumination,” Opt. Express16(24), 19821–19829 (2008).
    [CrossRef] [PubMed]
  10. P. Gao, B. Yao, I. Harder, N. Lindlein, and F. J. Torcal-Milla, “Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement,” Opt. Lett.36(21), 4305–4307 (2011).
    [CrossRef] [PubMed]
  11. H. Kadono, M. Ogusu, and S. Toyooka, “Phase shifting common path interferometer using a liquid-crystal phase modulator,” Opt. Commun.110(3-4), 391–400 (1994).
    [CrossRef]
  12. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett.29(21), 2503–2505 (2004).
    [CrossRef] [PubMed]
  13. N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt.46(10), 1836–1842 (2007).
    [CrossRef] [PubMed]
  14. J. Glückstad and P. C. Mogensen, “Optimal Phase Contrast in Common-Path Interferometry,” Appl. Opt.40(2), 268–282 (2001).
    [CrossRef] [PubMed]
  15. S. Wolfling, E. Lanzmann, M. Israeli, N. Ben-Yosef, and Y. Arieli, “Spatial phase-shift interferometry—a wavefront analysis technique for three-dimensional topometry,” J. Opt. Soc. Am. A22(11), 2498–2509 (2005).
    [CrossRef]
  16. P. T. Samsheerali, B. Das, and J. Joseph, “Quantitative phase contrast imaging using common-path in-line digital holography,” Opt. Commun.285, 1062–1065 (2012).
    [CrossRef]
  17. D. Palima and J. Glückstad, “Diffractive generalized phase contrast for adaptive phase imaging and optical security,” Opt. Express20(2), 1370–1377 (2012).
    [CrossRef] [PubMed]
  18. P. J. Rodrigo, D. Palima, and J. Glückstad, “Accurate quantitative phase imaging using generalized phase contrast,” Opt. Express16(4), 2740–2751 (2008).
    [CrossRef] [PubMed]

2012

2011

2010

2008

2007

2006

2005

2004

2001

2000

1994

H. Kadono, M. Ogusu, and S. Toyooka, “Phase shifting common path interferometer using a liquid-crystal phase modulator,” Opt. Commun.110(3-4), 391–400 (1994).
[CrossRef]

1942

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica9(7Part I), 686–698 (1942).
[CrossRef]

Arieli, Y.

Badizadegan, K.

Ben-Yosef, N.

Bernet, S.

Bhaduri, B.

Choi, W.

Das, B.

P. T. Samsheerali, B. Das, and J. Joseph, “Quantitative phase contrast imaging using common-path in-line digital holography,” Opt. Commun.285, 1062–1065 (2012).
[CrossRef]

Dasari, R. R.

Deflores, L. P.

Ding, H.

Erwin, J. K.

Feld, M. S.

Gao, P.

García, J.

Gillette, M.-U.

Glückstad, J.

Harder, I.

Ikeda, T.

Israeli, M.

Iwai, H.

Jesacher, A.

Joseph, J.

P. T. Samsheerali, B. Das, and J. Joseph, “Quantitative phase contrast imaging using common-path in-line digital holography,” Opt. Commun.285, 1062–1065 (2012).
[CrossRef]

Kadono, H.

H. Kadono, M. Ogusu, and S. Toyooka, “Phase shifting common path interferometer using a liquid-crystal phase modulator,” Opt. Commun.110(3-4), 391–400 (1994).
[CrossRef]

Lanzmann, E.

Liang, R.

Lindlein, N.

Lue, N.

Mansuripur, M.

Mantel, K.

Maurer, C.

Mico, V.

Millet, L.

Mir, M.

Mogensen, P. C.

Nercissian, V.

Ogusu, M.

H. Kadono, M. Ogusu, and S. Toyooka, “Phase shifting common path interferometer using a liquid-crystal phase modulator,” Opt. Commun.110(3-4), 391–400 (1994).
[CrossRef]

Palima, D.

Park, Y. K.

Pham, H.

Popescu, G.

Ritsch-Marte, M.

Rodrigo, P. J.

Rogers, J.

Samsheerali, P. T.

P. T. Samsheerali, B. Das, and J. Joseph, “Quantitative phase contrast imaging using common-path in-line digital holography,” Opt. Commun.285, 1062–1065 (2012).
[CrossRef]

Torcal-Milla, F. J.

Toyooka, S.

H. Kadono, M. Ogusu, and S. Toyooka, “Phase shifting common path interferometer using a liquid-crystal phase modulator,” Opt. Commun.110(3-4), 391–400 (1994).
[CrossRef]

Unarunotai, S.

Vaughan, J. C.

Wang, Z.

Wolfling, S.

Yao, B.

Zalevsky, Z.

Zernike, F.

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica9(7Part I), 686–698 (1942).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Commun.

H. Kadono, M. Ogusu, and S. Toyooka, “Phase shifting common path interferometer using a liquid-crystal phase modulator,” Opt. Commun.110(3-4), 391–400 (1994).
[CrossRef]

P. T. Samsheerali, B. Das, and J. Joseph, “Quantitative phase contrast imaging using common-path in-line digital holography,” Opt. Commun.285, 1062–1065 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Physica

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica9(7Part I), 686–698 (1942).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Phase contrast microscopy with grating-based phase-shifter on a SLM; P, polarizer; BE, beam expander; MO, microscopic objective; L1 and L2, achromatic lenses with focal lengths f1 = 200mm and f2 = 300mm; SLM, spatial light modulator. (a)~(e) grating-based phase-shifter loaded on the SLM: (a) surrounding grating, (b) central grating, (c)-(d) phase-shifters to generate the phase-shifting interferograms with phase shifts of 0, π/2 and π between diffracted and undiffracted components, respectively.

Fig. 2
Fig. 2

Fringe contrast adjustment for the proposed phase contrast method; (a) when the phase modulation depth of the surrounding grating is π; and (b) when the phase modulation depth of the surrounding grating is 0.3π. |Od|2 and |O0|2 denote the intensity of diffracted and undiffracted components; I2 denotes the interferogram between Od and O0 with phase shift π/2.

Fig. 3
Fig. 3

Phase contrast measurement on a rectangular phase-step; (a)-(b) intensity distributions of diffracted and undiffracted components; (c)-(e) phase contrast interferograms with phase shifts of 0, π/2 and π between the undiffracted and diffracted components, respectively.

Fig. 4
Fig. 4

Reconstructed phase distribution of the tested rectangular phase-step. (a) 2D reconstructed phase map; (b) the phase distribution along the cutline in (a).

Fig. 5
Fig. 5

Fringe contrast adjustment of interferograms through changing the phase modulation depth of the surrounding grating. (a) the modulation depth of the surrounding grating is π; (b) the modulation depth of the surrounding grating is 0.7π; (c) reconstructed phase distribution of the tested vortex phase plate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ I 1 =| O 0 | 2 +| O d | 2 + O 0 O d * + O 0 * O d , I 2 =| O 0 | 2 +| O d | 2 +i O 0 O d * i O 0 * O d , I 3 =| O 0 | 2 +| O d | 2 O 0 O d * O 0 * O d , I 0 =| O 0 | 2 .
O 0 * O d = (1+i)( I 1 I 3 )2i( I 1 I 2 ) 4 .
O(x,y)=| O 0 |+ | O d |exp(iΔϕ) τ = I 0 + O 0 * O d τ I 0 .

Metrics