Abstract

A multi-band circular polarizer is proposed by using multi layered planar spiral metamaterial structure in analogy with classic spiral antenna. At three distinct resonant frequencies, the incident linearly polarized wave with electric field paralleling to one specific direction is transformed into left/right-handed circularly polarized waves through electric field coupling. Measured and simulated results show that right-handed circularly polarized wave is produced at 13.33 GHz and 16.75 GHz while left-handed circularly polarized wave is obtained at 15.56 GHz. The surface current distributions are studied to investigate the transformation behavior for both circular polarizations. The relationship between the resonant positions and the structure parameters is discussed as well.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  5. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
    [CrossRef] [PubMed]
  6. M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag. 58(7), 2457–2459 (2010).
    [CrossRef]
  7. M. G. Silveirinha, “Design of linear-to-circular polarization transformers made of long densely packed metallic helices,” IEEE Trans. Antenn. Propag. 56(2), 390–401 (2008).
    [CrossRef]
  8. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
    [CrossRef] [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  10. S. X. Li, Z. Y. Yang, J. Wang, and M. Zhao, “Broadband terahertz circular polarizers with single- and double-helical array metamaterials,” J. Opt. Soc. Am. A 28(1), 19–23 (2011).
    [CrossRef] [PubMed]
  11. C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107(17), 177401 (2011).
    [CrossRef] [PubMed]
  12. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett. 36(9), 1653–1655 (2011).
    [CrossRef] [PubMed]
  13. X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
    [CrossRef]
  14. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
    [CrossRef]
  15. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
    [CrossRef]
  16. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), pp. 205–207.

2011 (4)

2010 (3)

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag. 58(7), 2457–2459 (2010).
[CrossRef]

2009 (2)

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

2008 (2)

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[CrossRef] [PubMed]

M. G. Silveirinha, “Design of linear-to-circular polarization transformers made of long densely packed metallic helices,” IEEE Trans. Antenn. Propag. 56(2), 390–401 (2008).
[CrossRef]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Akosman, A. E.

Alici, K. B.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Bao, Y. J.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

Caglayan, H.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Cahill, R.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag. 58(7), 2457–2459 (2010).
[CrossRef]

Chan, C. T.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107(17), 177401 (2011).
[CrossRef] [PubMed]

Chen, H.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107(17), 177401 (2011).
[CrossRef] [PubMed]

Colak, E.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Dickie, R.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag. 58(7), 2457–2459 (2010).
[CrossRef]

Dong, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Euler, M.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag. 58(7), 2457–2459 (2010).
[CrossRef]

Fusco, V.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag. 58(7), 2457–2459 (2010).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Hao, J.

He, Q.

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kafesaki, M.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Koschny, T.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Kwon, D. H.

Li, F.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107(17), 177401 (2011).
[CrossRef] [PubMed]

Li, H.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107(17), 177401 (2011).
[CrossRef] [PubMed]

Li, S. X.

Li, Z.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Li, Z. F.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Lu, X.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

Ming, N. B.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Mutlu, M.

Ozbay, E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett. 36(9), 1653–1655 (2011).
[CrossRef] [PubMed]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Peng, R. W.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Serebryannikov, A. E.

Shao, J.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

Silveirinha, M. G.

M. G. Silveirinha, “Design of linear-to-circular polarization transformers made of long densely packed metallic helices,” IEEE Trans. Antenn. Propag. 56(2), 390–401 (2008).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Soukoulis, C.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Soukoulis, C. M.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Sun, C.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

Sun, W.

Sun, W. H.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Wang, J.

Wang, M.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Werner, D. H.

Werner, P. L.

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Wu, C.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107(17), 177401 (2011).
[CrossRef] [PubMed]

Xiong, X.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

Yang, Z. Y.

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Yu, X.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107(17), 177401 (2011).
[CrossRef] [PubMed]

Zhao, M.

Zhao, R.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

Zhou, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Zhou, L.

Appl. Phys. Lett. (1)

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag. (2)

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag. 58(7), 2457–2459 (2010).
[CrossRef]

M. G. Silveirinha, “Design of linear-to-circular polarization transformers made of long densely packed metallic helices,” IEEE Trans. Antenn. Propag. 56(2), 390–401 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (2)

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of chiral metamaterial with U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107(17), 177401 (2011).
[CrossRef] [PubMed]

Science (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), pp. 205–207.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic structure of the dual-band circular polarizer unit cell.

Fig. 2
Fig. 2

Transmission of Txy and Tyy (a) amplitude of Txy and Tyy and (b) the phase of Txy and Tyy.

Fig. 3
Fig. 3

Calculated transformation coefficients from linear transmission coefficients to circular transmission coefficients.

Fig. 4
Fig. 4

Instantaneous surface current induced in the arcs by the incident y-polarized wave (a) at 14.15 GHz and (b) at 16.70 GHz.

Fig. 5
Fig. 5

Schematic configuration of the triple-band circular polarizer. (a) Photograph of the circular polarizer and the magnified unit cell. (b) Front view of the unit cell. Φ1 represents the angle between the upper end of metal layer 1 and x axis.

Fig. 6
Fig. 6

The transformation levels for the fabricated circular polarizer (a) the simulated results of the polarizer and (b) measured results for transformation.

Fig. 7
Fig. 7

Instantaneous surface current induced in the arcs (a) surface current at 13.33 GHz, (b) current at 15.56 GHz, (c) current at 16.75 GHz, (d) (e) and (f) current vectors in the middle of each arc at 13.33 GHz, 15.56 GHz, and 16.75 GHz.

Fig. 8
Fig. 8

Transformation behavior of the triple-band circular polarizer illuminated by an x-polarized wave.

Fig. 9
Fig. 9

Transformation spectra for different radius R (a) transformation of LCP wave (b) transformation of RCP wave.

Fig. 10
Fig. 10

Transformation spectra for different width w (a) transformation of LCP wave (b) transformation of RCP wave.

Fig. 11
Fig. 11

Transformation spectra for different thickness h (a) transformation of LCP wave (b) transformation of RCP wave.

Fig. 12
Fig. 12

Transformation spectra for different Φ1 (a) transformation of LCP wave (b) transformation of RCP wave.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E =( T xy x ± T yy y ) E 0 ,
C RCP = T xy +i T yy ,
C LCP = T xy i T yy .
L eff 2πθ 120 ×( R w 2 )+2h

Metrics