Abstract

In our previous work we proposed the completely closed optical cavity in which light rays with arbitrary directions are completely confined using total internal reflections by a single wall made of a transparent medium. Recently we have succeeded in the experimental confirmation of our proposal. Here, we will demonstrate the experimental results using a prototype cavity composed of GaP. In the cave 640nm LED lights are confined and leakage is less than 10-3. Also, external LED lights are rejected almost 99.9% by the single wall and cannot enter in the cave. Due to the high absorption loss of GaP the Q factor of the cavity is suppressed down and is estimated to be 1.4x106. The higher Q (~109) is expected if the lower loss (>1%/cm) materials are usable. This device will be useful for many applications such as laser cavities, optical filters, tanks storing natural solar light, micro darkrooms, etc.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
  2. S. Lin, Y. Kobayashi, Y. Ishikawa, and K. Wada, “Luminescence enhancement by Si ring resonator structures on silicon on insulator,” Appl. Phys. Lett. 92, 021113 (2008).
  3. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ~109,” J. Lightwave Technol. 26, 1532–1539 (2008).
  4. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).
  5. T. Kobayashi, “Completely closed optical shell using total internal reflection with simple composition,” Jpn. J. Appl. Phys. 49, 092502 (2010).
  6. A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).
  7. T. Kobayashi, “Functional light emitting devices utilizing control of spontaneous emission using 3D periodic microstructures and micro cavities,” Japan Patent No.1577615 (1982) [in Japanese].
  8. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).

2010 (1)

T. Kobayashi, “Completely closed optical shell using total internal reflection with simple composition,” Jpn. J. Appl. Phys. 49, 092502 (2010).

2008 (3)

S. Lin, Y. Kobayashi, Y. Ishikawa, and K. Wada, “Luminescence enhancement by Si ring resonator structures on silicon on insulator,” Appl. Phys. Lett. 92, 021113 (2008).

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ~109,” J. Lightwave Technol. 26, 1532–1539 (2008).

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).

1996 (2)

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).

1992 (1)

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).

Asano, T.

Cantatore, G.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Carugno, G.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Carusotto, S.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

De Rival, A. M.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Gorodetsky, M. L.

Ilchenko, V. S.

Ishikawa, Y.

S. Lin, Y. Kobayashi, Y. Ishikawa, and K. Wada, “Luminescence enhancement by Si ring resonator structures on silicon on insulator,” Appl. Phys. Lett. 92, 021113 (2008).

Kobayashi, T.

T. Kobayashi, “Completely closed optical shell using total internal reflection with simple composition,” Jpn. J. Appl. Phys. 49, 092502 (2010).

Kobayashi, Y.

S. Lin, Y. Kobayashi, Y. Ishikawa, and K. Wada, “Luminescence enhancement by Si ring resonator structures on silicon on insulator,” Appl. Phys. Lett. 92, 021113 (2008).

Kuramochi, E.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).

Lin, S.

S. Lin, Y. Kobayashi, Y. Ishikawa, and K. Wada, “Luminescence enhancement by Si ring resonator structures on silicon on insulator,” Appl. Phys. Lett. 92, 021113 (2008).

Marigo, S.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Micossi, P.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Milotti, E.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Noda, S.

Notomi, M.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).

Onofrio, R.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Pace, P.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Papa, M.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Perrone, F.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Polacco, E.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Rizzo, C.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Ruoso, G.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Savchenkov, A. A.

Shinya, A.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).

Tanabe, T.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).

Tanaka, Y.

Taniyama, H.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).

Valle, F. D.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Wada, K.

S. Lin, Y. Kobayashi, Y. Ishikawa, and K. Wada, “Luminescence enhancement by Si ring resonator structures on silicon on insulator,” Appl. Phys. Lett. 92, 021113 (2008).

Yokoyama, H.

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).

Zavattini, E.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Zavattini1, G.

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Appl. Phys. Lett. (2)

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93, 111112 (2008).

S. Lin, Y. Kobayashi, Y. Ishikawa, and K. Wada, “Luminescence enhancement by Si ring resonator structures on silicon on insulator,” Appl. Phys. Lett. 92, 021113 (2008).

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

T. Kobayashi, “Completely closed optical shell using total internal reflection with simple composition,” Jpn. J. Appl. Phys. 49, 092502 (2010).

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

A. M. De Rival, G. Zavattini1, S. Marigo, C. Rizzo, G. Ruoso, G. Carugno, R. Onofrio, S. Carusotto, M. Papa, F. Perrone, E. Polacco, G. Cantatore, F. D. Valle, P. Micossi, E. Milotti, P. Pace, and E. Zavattini, “Very high Q frequency-locked Fabry-Perot cavity,” Rev. Sci. Instrum. 67, 2680–2684 (1996).

Science (1)

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).

Other (1)

T. Kobayashi, “Functional light emitting devices utilizing control of spontaneous emission using 3D periodic microstructures and micro cavities,” Japan Patent No.1577615 (1982) [in Japanese].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The specially arranged planes required to compose “completely closed-optical-cavities”. (a) Principal planes and (b) 45-planes.

Fig. 2
Fig. 2

Typical examples of completely closed optical cavities. (a) A pyramid-like cavity with Cubic cave inside, (b) the inner and the outer surface in (a) are exchanged mutually, and (c) a light box type cavity suitable for big-size cavity.

Fig. 3
Fig. 3

Optical cavity constructed using a transparent GaP crystal. (a) Outline figure, A and B are caps and C is a trunk part, (b) photograph of the cavity where the cap A is removed off.

Fig. 4
Fig. 4

Side view of optical cavity block having a brilliant LED in its inside. (a) LED (610nm, 640nm), (b) outline of the optical cavity block (the left side cap is removed), and (c) side view photograph of optical cavity block with the LED inside.

Fig. 5
Fig. 5

Photograph of the case of external irradiation of light rays. Although light rays are irradiated to the block from the outside, no light ray reaches the cave inside of the block (a perfect darkroom composed by a transparent material). Here, weak white light is irradiated from the front so that the open side with the cave may be in sight.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

s principal =±u, ±v, and ±w
s 45 = ±v±w 2 , ±w±u 2 , and ±u±v 2 .
n r > 4+2 2 2.6132........
Q min = 2πn λα .
Q= 2πc λ τ= 2πn λα (1+δ).

Metrics