Abstract

We present the characterization of the carrier envelope offset frequency of 490 MHz femtosecond Yb-fiber ring laser. After amplification and compression, 1.7 W 90 fs pulses were produced for octave-span-spectrum generation from 600 nm to 1300 nm. More than 30 dB S/N ratio carrier envelope offset frequency signal was measured through a quasi-common-path interferometer.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pal, W. H. Knox, I. Hartl, and M. E. Fermann, “Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber,” Opt. Express15(19), 12161–12166 (2007).
    [CrossRef] [PubMed]
  2. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2(6), 355–359 (2008).
    [CrossRef]
  3. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett.36(5), 743–745 (2011).
    [CrossRef] [PubMed]
  4. A. Ruehl, K. C. Cossel, M. J. Martin, H. Mckay, B. Thomas, L. Dong, M. E. Fermann, J. M. Dudley, I. Hartl, and J. Ye, “1.5 octave highly coherent fiber frequency comb,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThK3.
  5. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in Yb-fiber laser comb,” Opt. Lett.36(9), 1578–1580 (2011).
    [CrossRef] [PubMed]
  6. A. Ruehl, A. Marcinkevičius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett.35(18), 3015–3017 (2010).
    [CrossRef] [PubMed]
  7. I. Hartl, H. A. Mckay, R. Thapa, B. K. Thomas, L. Dong, and M. E. Fermann, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CMN1.
  8. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B24(8), 1756–1770 (2007).
    [CrossRef]
  9. I. Hartl, A. Romann, and M. E. Fermann, “Passively mode locked GHz femtosecond Yb-fiber laser using an intra-cavity Martinez compressor,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMD3.
  10. T. Wilken, P. Vilar Welter, T. W. Hänsch, T. Udem, T. Steinmetz, and R. Holzwarth, “High repetition rate, tunable femtosecond Yb-fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2010), paper CFK2.
  11. P. Li, A. Wang, X. Wang, and Z. Zhang, “330 MHz repetition rate femtosecond Yb:fiber ring laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMS4.
  12. A. Wang, H. Yang, and Z. Zhang, “503 MHz repetition rate femtosecond Yb: fiber ring laser with an integrated WDM collimator,” Opt. Express19(25), 25412–25417 (2011).
    [CrossRef] [PubMed]
  13. P. Li, A. Wang, X. Wang, and Z. Zhang, “330 MHz, sub 50 fs Yb:fiber ring laser,” Opt. Commun.285(9), 2430–2432 (2012).
    [CrossRef]
  14. J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron.8(3), 651–659 (2002).
    [CrossRef]
  15. C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, “Performance comparison of interferometer topologies for carrier-envelope phase detection,” Appl. Phys. B95(1), 81–84 (2009).
    [CrossRef]
  16. J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]

2012

P. Li, A. Wang, X. Wang, and Z. Zhang, “330 MHz, sub 50 fs Yb:fiber ring laser,” Opt. Commun.285(9), 2430–2432 (2012).
[CrossRef]

2011

2010

2009

C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, “Performance comparison of interferometer topologies for carrier-envelope phase detection,” Appl. Phys. B95(1), 81–84 (2009).
[CrossRef]

2008

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2(6), 355–359 (2008).
[CrossRef]

2007

2006

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

2002

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron.8(3), 651–659 (2002).
[CrossRef]

Allison, T. K.

Cingöz, A.

Coen, S.

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron.8(3), 651–659 (2002).
[CrossRef]

Diddams, S. A.

Dudley, J. M.

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron.8(3), 651–659 (2002).
[CrossRef]

Fermann, M. E.

Grebing, C.

C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, “Performance comparison of interferometer topologies for carrier-envelope phase detection,” Appl. Phys. B95(1), 81–84 (2009).
[CrossRef]

Hartl, I.

Johnson, T. A.

Knox, W. H.

Kobayashi, Y.

Koke, S.

C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, “Performance comparison of interferometer topologies for carrier-envelope phase detection,” Appl. Phys. B95(1), 81–84 (2009).
[CrossRef]

Li, P.

P. Li, A. Wang, X. Wang, and Z. Zhang, “330 MHz, sub 50 fs Yb:fiber ring laser,” Opt. Commun.285(9), 2430–2432 (2012).
[CrossRef]

Manschwetus, B.

C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, “Performance comparison of interferometer topologies for carrier-envelope phase detection,” Appl. Phys. B95(1), 81–84 (2009).
[CrossRef]

Marcinkevicius, A.

A. Ruehl, A. Marcinkevičius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett.35(18), 3015–3017 (2010).
[CrossRef] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2(6), 355–359 (2008).
[CrossRef]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2(6), 355–359 (2008).
[CrossRef]

Newbury, N. R.

Nugent-Glandorf, L.

Pal, P.

Ruehl, A.

Schibli, T. R.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2(6), 355–359 (2008).
[CrossRef]

Steinmeyer, G.

C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, “Performance comparison of interferometer topologies for carrier-envelope phase detection,” Appl. Phys. B95(1), 81–84 (2009).
[CrossRef]

Swann, W. C.

Wang, A.

Wang, X.

P. Li, A. Wang, X. Wang, and Z. Zhang, “330 MHz, sub 50 fs Yb:fiber ring laser,” Opt. Commun.285(9), 2430–2432 (2012).
[CrossRef]

Yang, H.

Ye, J.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett.36(5), 743–745 (2011).
[CrossRef] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2(6), 355–359 (2008).
[CrossRef]

Yost, D. C.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett.36(5), 743–745 (2011).
[CrossRef] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2(6), 355–359 (2008).
[CrossRef]

Zhang, Z.

Appl. Phys. B

C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, “Performance comparison of interferometer topologies for carrier-envelope phase detection,” Appl. Phys. B95(1), 81–84 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron.8(3), 651–659 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics2(6), 355–359 (2008).
[CrossRef]

Opt. Commun.

P. Li, A. Wang, X. Wang, and Z. Zhang, “330 MHz, sub 50 fs Yb:fiber ring laser,” Opt. Commun.285(9), 2430–2432 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Mod. Phys.

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Other

A. Ruehl, K. C. Cossel, M. J. Martin, H. Mckay, B. Thomas, L. Dong, M. E. Fermann, J. M. Dudley, I. Hartl, and J. Ye, “1.5 octave highly coherent fiber frequency comb,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThK3.

I. Hartl, H. A. Mckay, R. Thapa, B. K. Thomas, L. Dong, and M. E. Fermann, “GHz Yb-femtosecond-fiber laser frequency comb,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2009), paper CMN1.

I. Hartl, A. Romann, and M. E. Fermann, “Passively mode locked GHz femtosecond Yb-fiber laser using an intra-cavity Martinez compressor,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMD3.

T. Wilken, P. Vilar Welter, T. W. Hänsch, T. Udem, T. Steinmetz, and R. Holzwarth, “High repetition rate, tunable femtosecond Yb-fiber laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2010), paper CFK2.

P. Li, A. Wang, X. Wang, and Z. Zhang, “330 MHz repetition rate femtosecond Yb:fiber ring laser,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMS4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Yb fiber frequency comb system configuration. (FR: Faraday rotator; PBS: polarization beam splitter; frep: repetition rate frequency; fceo: carrier envelope offset frequency; PD: pin photodiode; APD: avalanche photodiode; PCF: photonic crystal fiber; PPLN: periodically poled lithium niobate.)

Fig. 2
Fig. 2

(a) The output spectrum of oscillator and amplifier; (b) Interferometric autocorrelation with inferred intensity autocorrelation(white) of compressed pulses, the corresponding pulse width is 90 fs.

Fig. 3
Fig. 3

The octave-spanning spectrum generated in the tapered PCF.

Fig. 4
Fig. 4

The inferred intensity autocorrelation (a) and its equivalent Gaussian pulse (b).

Fig. 5
Fig. 5

(a) The fceo measurement with a “noisy” pump. The upside is the pump variation with time. By switching off and on the pump, its noise was compared with the background of the photo detector. The downside is fceo signal. (b) The fceo measurement at “quiet” pump. The upside and downside configuration is the same as (a).

Fig. 6
Fig. 6

The fceo linewidth versus net cavity dispersion, driven by the “quiet” pump (a) The fceo at anomalous net cavity dispersion. The upside is the output spectrum. Because of absorption of gain fiber, only long wavelength side band can be observed. The downside is fceo signal. (b) The fceo at near zero net cavity dispersion. The upside and downside configuration is the same as (a).

Fig. 7
Fig. 7

The fceo signal with 33 dB S/N ratio at 100 kHz RBW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N 2 = γ P 0 T 0 2 | β 2 | = γE T 0 π | β 2 |

Metrics