Abstract

We report on the design, fabrication, and demonstration of waveguide coupled channel drop filters at 1550 nm, on a silicon-on-insulator (SOI) substrate. These devices rely on resonant power transfer from a bus waveguide to side-walled Bragg resonators with quarter-wave shifts in the middle. By employing a second mirror resonator, and a tap-off waveguide, reflections along the bus waveguide can be reduced, leading to realization of circulator-free resonance filters. These devices were fabricated on SOI using e-beam lithography and inductively coupled plasma (ICP) etching. Fabricated devices with two coupled cavities are demonstrated to have rejection ratios greater than 20 dB and 3-dB bandwidths of 110 GHz, close to the values predicted by numerical modeling. We also demonstrate power tap-off at resonance of around 16 dB.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Vahala, Optical Microcavities (World Scientific, 2004).
  2. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [CrossRef]
  3. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
    [CrossRef]
  4. D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24(4), 194–196 (1974).
    [CrossRef]
  5. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14(2), 664–669 (2006).
    [CrossRef] [PubMed]
  6. Z. Tian, V. Veerasubramanian, P. Bianucci, S. Mukherjee, Z. Mi, A. G. Kirk, and D. V. Plant, “Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides,” Opt. Express 19(13), 12164–12171 (2011).
    [CrossRef] [PubMed]
  7. V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: synthesis and fabrication,” J. Vac. Sci. Technol. B 13(6), 2859–2864 (1995).
    [CrossRef]
  8. H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
    [CrossRef]
  9. R. Kazarinov, C. Henry, and N. Olsson, “Narrow-band resonant optical reflectors and resonant optical transformers for laser stabilization and wavelength division multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
    [CrossRef]
  10. H. A. Haus and Y. Lai, “Narrow-band optical channel-dropping filter,” J. Lightwave Technol. 10(1), 57–62 (1992).
    [CrossRef]
  11. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [CrossRef]
  12. H. A. Haus and Y. Lai, “Narrow-band distributed feedback reflector design,” J. Lightwave Technol. 9(6), 754–760 (1991).
    [CrossRef]
  13. J. N. Damask, “Practical design of side-coupled quarter-wave shifted distributed-Bragg resonant filters,” J. Lightwave Technol. 14(5), 812–821 (1996).
    [CrossRef]
  14. V. Veerasubramanian, A. G. Kirk, G. Beaudin, A. Giguere, B. Le Drogoff, and V. Aimez, “Waveguide coupled drop filters on SOI using vertical sidewalled grating resonators, ” in Proceedings of 23rd Annual Meeting of the IEEE Photonics Society (IEEE, 2010), pp. 634–635.
  15. P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Broadband tunable bandpass filters using phase shifted vertical side wall grating in a submicrometer silicon-on-insulator waveguide,” Appl. Opt. 48(29), 5598–5603 (2009).
    [CrossRef] [PubMed]
  16. H.-C. Kim, J. Wiedmann, K. Matsui, S. Tamura, and S. Arai, “1.5 micron wavelength distributed feedback lasers with deeply etched first-order vertical grating,” Jpn. J. Appl. Phys. 40(Part 2, No. 10B), L1107– L1109 (2001).
    [CrossRef]
  17. H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, and S. Arai, “1.5 micron wavelength narrow stripe distributed reflector lasers for high-performance operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1146–1152 (2003).
    [CrossRef]
  18. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  19. P. Bienstman and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34(5-6), 523–540 (2002).
    [CrossRef]
  20. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007).
  21. D. G. Hall, “Optical waveguide diffraction gratings: coupling between guided modes,” in Progress in Optics, E. Wolf, ed. (1991).
  22. H.-C. Kim, K. Ikeda, and Y. Fainman, “Resonant waveguide device with vertical gratings,” Opt. Lett. 32(5), 539–541 (2007).
    [CrossRef] [PubMed]
  23. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  24. M. Menard and A. G. Kirk, “Integrated Fabry-Perot comb filters for optical space switching,” J. Lightwave Technol. 28(5), 768–775 (2010).
    [CrossRef]

2011 (1)

2010 (1)

2009 (1)

2007 (1)

2006 (1)

2004 (1)

2003 (1)

H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, and S. Arai, “1.5 micron wavelength narrow stripe distributed reflector lasers for high-performance operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1146–1152 (2003).
[CrossRef]

2002 (1)

P. Bienstman and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34(5-6), 523–540 (2002).
[CrossRef]

2001 (1)

H.-C. Kim, J. Wiedmann, K. Matsui, S. Tamura, and S. Arai, “1.5 micron wavelength distributed feedback lasers with deeply etched first-order vertical grating,” Jpn. J. Appl. Phys. 40(Part 2, No. 10B), L1107– L1109 (2001).
[CrossRef]

1997 (3)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[CrossRef]

1996 (1)

J. N. Damask, “Practical design of side-coupled quarter-wave shifted distributed-Bragg resonant filters,” J. Lightwave Technol. 14(5), 812–821 (1996).
[CrossRef]

1995 (1)

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: synthesis and fabrication,” J. Vac. Sci. Technol. B 13(6), 2859–2864 (1995).
[CrossRef]

1992 (1)

H. A. Haus and Y. Lai, “Narrow-band optical channel-dropping filter,” J. Lightwave Technol. 10(1), 57–62 (1992).
[CrossRef]

1991 (1)

H. A. Haus and Y. Lai, “Narrow-band distributed feedback reflector design,” J. Lightwave Technol. 9(6), 754–760 (1991).
[CrossRef]

1987 (1)

R. Kazarinov, C. Henry, and N. Olsson, “Narrow-band resonant optical reflectors and resonant optical transformers for laser stabilization and wavelength division multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
[CrossRef]

1974 (1)

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24(4), 194–196 (1974).
[CrossRef]

1971 (1)

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

Arai, S.

H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, and S. Arai, “1.5 micron wavelength narrow stripe distributed reflector lasers for high-performance operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1146–1152 (2003).
[CrossRef]

H.-C. Kim, J. Wiedmann, K. Matsui, S. Tamura, and S. Arai, “1.5 micron wavelength distributed feedback lasers with deeply etched first-order vertical grating,” Jpn. J. Appl. Phys. 40(Part 2, No. 10B), L1107– L1109 (2001).
[CrossRef]

Baets, R.

Beckx, S.

Bianucci, P.

Bienstman, P.

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

P. Bienstman and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34(5-6), 523–540 (2002).
[CrossRef]

Bogaerts, W.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Damask, J. N.

J. N. Damask, “Practical design of side-coupled quarter-wave shifted distributed-Bragg resonant filters,” J. Lightwave Technol. 14(5), 812–821 (1996).
[CrossRef]

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: synthesis and fabrication,” J. Vac. Sci. Technol. B 13(6), 2859–2864 (1995).
[CrossRef]

Dumon, P.

Fainman, Y.

Ferrera, J.

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: synthesis and fabrication,” J. Vac. Sci. Technol. B 13(6), 2859–2864 (1995).
[CrossRef]

Flanders, D. C.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24(4), 194–196 (1974).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[CrossRef]

Hasegawa, T.

H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, and S. Arai, “1.5 micron wavelength narrow stripe distributed reflector lasers for high-performance operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1146–1152 (2003).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: synthesis and fabrication,” J. Vac. Sci. Technol. B 13(6), 2859–2864 (1995).
[CrossRef]

H. A. Haus and Y. Lai, “Narrow-band optical channel-dropping filter,” J. Lightwave Technol. 10(1), 57–62 (1992).
[CrossRef]

H. A. Haus and Y. Lai, “Narrow-band distributed feedback reflector design,” J. Lightwave Technol. 9(6), 754–760 (1991).
[CrossRef]

Henry, C.

R. Kazarinov, C. Henry, and N. Olsson, “Narrow-band resonant optical reflectors and resonant optical transformers for laser stabilization and wavelength division multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
[CrossRef]

Ikeda, K.

Jaenen, P.

Jing, Z.

Kanjo, H.

H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, and S. Arai, “1.5 micron wavelength narrow stripe distributed reflector lasers for high-performance operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1146–1152 (2003).
[CrossRef]

Kazarinov, R.

R. Kazarinov, C. Henry, and N. Olsson, “Narrow-band resonant optical reflectors and resonant optical transformers for laser stabilization and wavelength division multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
[CrossRef]

Kim, H. C.

H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, and S. Arai, “1.5 micron wavelength narrow stripe distributed reflector lasers for high-performance operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1146–1152 (2003).
[CrossRef]

Kim, H.-C.

H.-C. Kim, K. Ikeda, and Y. Fainman, “Resonant waveguide device with vertical gratings,” Opt. Lett. 32(5), 539–541 (2007).
[CrossRef] [PubMed]

H.-C. Kim, J. Wiedmann, K. Matsui, S. Tamura, and S. Arai, “1.5 micron wavelength distributed feedback lasers with deeply etched first-order vertical grating,” Jpn. J. Appl. Phys. 40(Part 2, No. 10B), L1107– L1109 (2001).
[CrossRef]

Kirk, A. G.

Kogelnik, H.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24(4), 194–196 (1974).
[CrossRef]

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

Lai, Y.

H. A. Haus and Y. Lai, “Narrow-band optical channel-dropping filter,” J. Lightwave Technol. 10(1), 57–62 (1992).
[CrossRef]

H. A. Haus and Y. Lai, “Narrow-band distributed feedback reflector design,” J. Lightwave Technol. 9(6), 754–760 (1991).
[CrossRef]

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Matsui, K.

H.-C. Kim, J. Wiedmann, K. Matsui, S. Tamura, and S. Arai, “1.5 micron wavelength distributed feedback lasers with deeply etched first-order vertical grating,” Jpn. J. Appl. Phys. 40(Part 2, No. 10B), L1107– L1109 (2001).
[CrossRef]

Menard, M.

Mi, Z.

Mukherjee, S.

Murphy, T. E.

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: synthesis and fabrication,” J. Vac. Sci. Technol. B 13(6), 2859–2864 (1995).
[CrossRef]

Murukeshan, V. M.

Olsson, N.

R. Kazarinov, C. Henry, and N. Olsson, “Narrow-band resonant optical reflectors and resonant optical transformers for laser stabilization and wavelength division multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
[CrossRef]

Plant, D. V.

Prabhathan, P.

Ramana, P. V.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Schmidt, R. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24(4), 194–196 (1974).
[CrossRef]

Shank, C. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24(4), 194–196 (1974).
[CrossRef]

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Smith, H. I.

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: synthesis and fabrication,” J. Vac. Sci. Technol. B 13(6), 2859–2864 (1995).
[CrossRef]

Taillaert, D.

Tamura, S.

H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, and S. Arai, “1.5 micron wavelength narrow stripe distributed reflector lasers for high-performance operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1146–1152 (2003).
[CrossRef]

H.-C. Kim, J. Wiedmann, K. Matsui, S. Tamura, and S. Arai, “1.5 micron wavelength distributed feedback lasers with deeply etched first-order vertical grating,” Jpn. J. Appl. Phys. 40(Part 2, No. 10B), L1107– L1109 (2001).
[CrossRef]

Tian, Z.

Van Thourhout, D.

Veerasubramanian, V.

Wiedmann, J.

H.-C. Kim, J. Wiedmann, K. Matsui, S. Tamura, and S. Arai, “1.5 micron wavelength distributed feedback lasers with deeply etched first-order vertical grating,” Jpn. J. Appl. Phys. 40(Part 2, No. 10B), L1107– L1109 (2001).
[CrossRef]

Wong, V. V.

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: synthesis and fabrication,” J. Vac. Sci. Technol. B 13(6), 2859–2864 (1995).
[CrossRef]

Wouters, J.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. C. Flanders, H. Kogelnik, R. V. Schmidt, and C. V. Shank, “Grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 24(4), 194–196 (1974).
[CrossRef]

H. Kogelnik and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Kazarinov, C. Henry, and N. Olsson, “Narrow-band resonant optical reflectors and resonant optical transformers for laser stabilization and wavelength division multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. C. Kim, H. Kanjo, T. Hasegawa, S. Tamura, and S. Arai, “1.5 micron wavelength narrow stripe distributed reflector lasers for high-performance operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1146–1152 (2003).
[CrossRef]

J. Lightwave Technol. (6)

H. A. Haus and Y. Lai, “Narrow-band distributed feedback reflector design,” J. Lightwave Technol. 9(6), 754–760 (1991).
[CrossRef]

J. N. Damask, “Practical design of side-coupled quarter-wave shifted distributed-Bragg resonant filters,” J. Lightwave Technol. 14(5), 812–821 (1996).
[CrossRef]

H. A. Haus and Y. Lai, “Narrow-band optical channel-dropping filter,” J. Lightwave Technol. 10(1), 57–62 (1992).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[CrossRef]

M. Menard and A. G. Kirk, “Integrated Fabry-Perot comb filters for optical space switching,” J. Lightwave Technol. 28(5), 768–775 (2010).
[CrossRef]

J. Vac. Sci. Technol. B (1)

V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. I. Smith, and H. A. Haus, “Distributed Bragg grating integrated-optical filters: synthesis and fabrication,” J. Vac. Sci. Technol. B 13(6), 2859–2864 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H.-C. Kim, J. Wiedmann, K. Matsui, S. Tamura, and S. Arai, “1.5 micron wavelength distributed feedback lasers with deeply etched first-order vertical grating,” Jpn. J. Appl. Phys. 40(Part 2, No. 10B), L1107– L1109 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

P. Bienstman and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34(5-6), 523–540 (2002).
[CrossRef]

Other (5)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2007).

D. G. Hall, “Optical waveguide diffraction gratings: coupling between guided modes,” in Progress in Optics, E. Wolf, ed. (1991).

V. Veerasubramanian, A. G. Kirk, G. Beaudin, A. Giguere, B. Le Drogoff, and V. Aimez, “Waveguide coupled drop filters on SOI using vertical sidewalled grating resonators, ” in Proceedings of 23rd Annual Meeting of the IEEE Photonics Society (IEEE, 2010), pp. 634–635.

K. Vahala, Optical Microcavities (World Scientific, 2004).

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Top schematic view of the waveguide coupled drop filter with side-etched gratings.

Fig. 2
Fig. 2

(a) Electric field distribution in a Bragg resonator with a quarter-wave defect indicating an exponential decay towards either end. (b) The 2D refractive index profile and a cross-cut of the propagating electric field (Ey, at z = 5 μm) of the waveguide mode in the bus, indicating power transfer into the output resonator through its evanescent tail.

Fig. 3
Fig. 3

(a) Top view of the FDTD model. (b) Electric field at an off-resonance wavelength indicating almost 100% transmission through the bus waveguide. (c) Electric field at resonance indicating power tap-off at the resonant wavelength. The electric field scale palette is also shown.

Fig. 4
Fig. 4

Variation of the drop channel response with the air-gap between the bus waveguide and resonator. The stripe width was 600 nm with 100 nm teeth, and a period of 286 nm. The computed Q-factors are also shown.

Fig. 5
Fig. 5

(a) Comparison of the dropped channel and tap-off efficiency using EEM (dashed lines) and FDTD method (solid lines). (b) Effect of coupling multiple cavities (Obtained using EEM).

Fig. 6
Fig. 6

Top schematic view of the waveguide coupled drop filter with two coupled cavities in the output resonator.

Fig. 7
Fig. 7

(a) A top view SEM micrograph showing the S-bend and the bus waveguide. (b) A top perspective view SEM micrograph showing the output resonator with the λ/4 shift and the bus waveguide.

Fig. 8
Fig. 8

Schematic of the experimental setup.

Fig. 9
Fig. 9

(a) Comparison of the experimental drop channel response for single and two coupled cavities. The 3-dB bandwidth of the coupled cavity filter is around 110 GHz, with a filter roll-off of 50 dB/nm, and a top-hat like profile. (b) Drop channel and the tap channel response of a fabricated device.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R= |κ | 2 sin h 2 (sL) s 2 cos h 2 (sL)+ (Δβ/2) 2 sin h 2 (sL) ,
κ=[ Γ π λ Δ W S W eff n Si 2 N 2 Nq ][ N 2 n Si 2 N 2 n Si O 2 2 +1 ],

Metrics