Abstract

We present wide electrical tuning of microring resonators with auto-realigned nematic liquid crystal (NLC) cladding. By applying electric field, homeotropically-aligned negative Δε NLC with non-rubbed alignment layers is auto-realigned along the microring waveguide due to the protruding of the ridge structure. The consistent cladding index distribution along the microring waveguide produces effective tuning of the resonant wavelength. It achieves a large tuning range of 13nm for TM mode and 2.1nm for TE mode. The NLC reorientation characteristics are investigated by minimizing Oseen-Frank energy. The proposed microring resonator owns the features of large tuning range and bi-polarization wavelength tuning.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  2. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express16(19), 14421–14428 (2008).
    [CrossRef] [PubMed]
  3. G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol.17(7), 1248–1254 (1999).
    [CrossRef]
  4. C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett.33(7), 708–710 (2008).
    [CrossRef] [PubMed]
  5. S. Mikroulis, E. Roditi, and D. Syvridis, “Direct modulation properties of 1.55-μm InGaAsP/InP microring lasers,” J. Lightwave Technol.26(2), 251–256 (2008).
    [CrossRef]
  6. M. Gandomkar and V. Ahmadi, “Design and analysis of enhanced second harmonic generation in AlGaAs/AlO(x) microring waveguide,” Opt. Express19(10), 9408–9418 (2011).
    [CrossRef] [PubMed]
  7. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
    [CrossRef]
  8. T.-J. Wang, C.-H. Chu, and C.-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett.32(19), 2777–2779 (2007).
    [CrossRef] [PubMed]
  9. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
    [CrossRef]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  11. B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
    [CrossRef]
  12. W. De Cort, J. Beeckman, R. James, F. A. Fernández, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett.34(13), 2054–2056 (2009).
    [CrossRef] [PubMed]
  13. T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An effectively tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
    [CrossRef]
  14. W. De Cort, J. Beeckman, R. James, F. A. Fernandez, R. Baets, and K. Neyts, “Tuning silicon-on-insulator ring resonators with in-plane switching liquid crystals,” J. Opt. Soc. Am. B28(1), 79–85 (2011).
    [CrossRef]
  15. W. De Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett.36(19), 3876–3878 (2011).
    [CrossRef] [PubMed]
  16. J. L. D. Bougrenet and D. L. Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst.31(2), 241–269 (2004).
    [CrossRef]
  17. J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng.50(8), 081202 (2011).
    [CrossRef]
  18. T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photon. Technol. Lett.17(3), 582–584 (2005).
    [CrossRef]
  19. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford U. Press, 1995).

2011

2010

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An effectively tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

2009

2008

2007

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

T.-J. Wang, C.-H. Chu, and C.-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett.32(19), 2777–2779 (2007).
[CrossRef] [PubMed]

2006

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

2005

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photon. Technol. Lett.17(3), 582–584 (2005).
[CrossRef]

2004

J. L. D. Bougrenet and D. L. Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst.31(2), 241–269 (2004).
[CrossRef]

2003

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

1999

Ahmadi, V.

Baets, R.

Bañuls, M. J.

Barrios, C. A.

Beeckman, J.

Bougrenet, J. L. D.

J. L. D. Bougrenet and D. L. Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst.31(2), 241–269 (2004).
[CrossRef]

Cai, T.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An effectively tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

Casquel, R.

Chen, H.-L.

T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photon. Technol. Lett.17(3), 582–584 (2005).
[CrossRef]

Chen, P.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An effectively tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

Chu, C.-H.

Claes, T.

Dalton, L.

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

De Cort, W.

Degl’innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Fernandez, F. A.

Fernández, F. A.

Gandomkar, M.

González-Pedro, V.

Griol, A.

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Gunn, G.

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Gylfason, K. B.

Hane, K.

He, S.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An effectively tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

Holgado, M.

Huang, Y.-H.

T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photon. Technol. Lett.17(3), 582–584 (2005).
[CrossRef]

James, R.

Kanamori, Y.

Kokubun, Y.

Lawson, R.

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

Lenz, G.

Lin, C.-Y.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, Q.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An effectively tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Madsen, C. K.

Maquieira, A.

Maune, B.

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

Mikroulis, S.

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Neyts, K.

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Roditi, E.

Sánchez, B.

Scherer, A.

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Shi, Y.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An effectively tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

Sohlström, H.

Syvridis, D.

Takahashi, K.

Tocnaye, D. L.

J. L. D. Bougrenet and D. L. Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst.31(2), 241–269 (2004).
[CrossRef]

Vanbrabant, P. J. M.

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng.50(8), 081202 (2011).
[CrossRef]

Wang, T.-J.

T.-J. Wang, C.-H. Chu, and C.-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett.32(19), 2777–2779 (2007).
[CrossRef] [PubMed]

T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photon. Technol. Lett.17(3), 582–584 (2005).
[CrossRef]

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006).
[CrossRef]

B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003).
[CrossRef]

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An effectively tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photon. Technol. Lett.17(3), 582–584 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Liq. Cryst.

J. L. D. Bougrenet and D. L. Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems,” Liq. Cryst.31(2), 241–269 (2004).
[CrossRef]

Nat. Photonics

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Eng.

J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng.50(8), 081202 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Other

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Top view; and (b) cross-sectional view of the proposed microring resonator; (c) schematic illustration of tilt NLC molecule (or director n ^ ).

Fig. 2
Fig. 2

Tilt angle distribution of NLC molecules for the applied voltage: (a) V = 0; (b) V = 5V, (c) V = 10V; (d) V = 100V.

Fig. 3
Fig. 3

Dependence of the simulated resonant wavelength for (a) TM mode; (b) TE mode; on the voltage for the preset azimuth angle ϕ = 0°, 45°, and 90°. (Inset: the field distribution of guided mode).

Fig. 4
Fig. 4

Photographs of polarized optical microscope for the NLC-cladded microring resonator with the applied voltage of (a) 0V; (b) 50V. The directions of polarizer (P) and analyzer (A) are indicated in the figure.

Fig. 5
Fig. 5

Dependence of the measured resonant wavelength for (a) TM mode; (b) TE mode; on the voltage. (Inset: the transmission spectrum for the voltages of 0V and 100V).

Metrics