Abstract

Fast responses (20 ms rising time) both in symmetrical two-wave and degenerate-four-wave mixing experiments were observed and investigated in C60 doped 4,4’-n-pentylcyanobiphenyl liquid crystal cells sandwiched between bare ZnSe substrates with an electric field applied parallel to the cell surfaces. The ZnSe material seems responsible for the fast response due to its excellent charge carrier transportation capability. Strong fanning effect and transient features were seen and studied, hinting super strong photorefractive effect in the material system. This low voltage operated liquid crystal based photorefractive approach is promising in real time applications over visible to terahertz regime.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Photorefractive Materialsand Their Applications 2 Materials, P. Günter and J-P. Huignard, eds., (Springer, 2007) pp 1–640.
  2. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
    [CrossRef] [PubMed]
  3. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
    [CrossRef] [PubMed]
  4. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
    [CrossRef] [PubMed]
  5. F. Simoni and L. Lucchetti, “Photorefractive effects in liquid crystals,” in Photorefractive Materials and Their Applications 2, P. Günter and J-P. Huignard, eds. (Springer, 2007), pp. 571–605.
  6. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett.19(21), 1723–1725 (1994).
    [CrossRef] [PubMed]
  7. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science270(5243), 1794–1797 (1995).
    [CrossRef]
  8. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471(5-6), 221–267 (2009).
    [CrossRef]
  9. J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Y. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett.25(6), 414–416 (2000).
    [CrossRef] [PubMed]
  10. X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett.90(20), 201115 (2007).
    [CrossRef]
  11. X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys.102(1), 013104 (2007).
    [CrossRef]
  12. S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett.81(20), 3705–3707 (2002).
    [CrossRef]
  13. L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett.96(11), 111106 (2010).
    [CrossRef]
  14. H. Zhao, C. Lian, X. Sun, and J. W. Zhang, “Nanoscale interlayer that raises response rate in photorefractive liquid crystal polymer composites,” Opt. Express19(13), 12496–12502 (2011).
    [CrossRef] [PubMed]
  15. J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett.72(23), 2948–2950 (1998).
    [CrossRef]
  16. C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
    [CrossRef]
  17. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B11(2), 320–330 (1994).
    [CrossRef]
  18. I. C. Khoo, “The infrared optical nonlinearities of nematic liquid crystals and novel two-wave mixing processes,” J. Mod. Opt.37(11), 1801–1813 (1990).
    [CrossRef]
  19. L. M. Lee, H. J. Kwon, R. G. Nuzzo, and K. S. Schweizer, “Effects of temperature on the alignment and electrooptical responses of a nematic nanoscale liquid crystalline film,” J. Phys. Chem. B110(32), 15782–15790 (2006).
    [CrossRef] [PubMed]
  20. A. R. Noble-Luginbuhl, R. M. Blanchard, and R. G. Nuzzo, “Surface effects on the dynamics of liquid crystalline thin films confined in nanoscale cavities,” J. Am. Chem. Soc.122(16), 3917–3926 (2000).
    [CrossRef]
  21. F. Poisson, “Nematic liquid crystal used as an instantaneous holographic medium,” Opt. Commun.6(1), 43–44 (1972).
    [CrossRef]
  22. Y. Williams, K. Chan, J. H. Park, I. C. Khoo, B. Lewis, and T. E. Mallouk, “Electro-optical and nonlinear optical properties of semiconductor nanorod doped liquid crystals,” Proc. SPIE5936, 593613, 593613-6 (2005).
    [CrossRef]
  23. V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
    [CrossRef]
  24. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
    [CrossRef]

2011

2010

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett.96(11), 111106 (2010).
[CrossRef]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

2009

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471(5-6), 221–267 (2009).
[CrossRef]

2008

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

2007

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett.90(20), 201115 (2007).
[CrossRef]

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys.102(1), 013104 (2007).
[CrossRef]

2006

L. M. Lee, H. J. Kwon, R. G. Nuzzo, and K. S. Schweizer, “Effects of temperature on the alignment and electrooptical responses of a nematic nanoscale liquid crystalline film,” J. Phys. Chem. B110(32), 15782–15790 (2006).
[CrossRef] [PubMed]

2005

Y. Williams, K. Chan, J. H. Park, I. C. Khoo, B. Lewis, and T. E. Mallouk, “Electro-optical and nonlinear optical properties of semiconductor nanorod doped liquid crystals,” Proc. SPIE5936, 593613, 593613-6 (2005).
[CrossRef]

2004

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

2002

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett.81(20), 3705–3707 (2002).
[CrossRef]

2001

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
[CrossRef]

2000

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Y. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett.25(6), 414–416 (2000).
[CrossRef] [PubMed]

A. R. Noble-Luginbuhl, R. M. Blanchard, and R. G. Nuzzo, “Surface effects on the dynamics of liquid crystalline thin films confined in nanoscale cavities,” J. Am. Chem. Soc.122(16), 3917–3926 (2000).
[CrossRef]

1998

J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett.72(23), 2948–2950 (1998).
[CrossRef]

1995

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
[CrossRef]

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science270(5243), 1794–1797 (1995).
[CrossRef]

1994

1990

I. C. Khoo, “The infrared optical nonlinearities of nematic liquid crystals and novel two-wave mixing processes,” J. Mod. Opt.37(11), 1801–1813 (1990).
[CrossRef]

1972

F. Poisson, “Nematic liquid crystal used as an instantaneous holographic medium,” Opt. Commun.6(1), 43–44 (1972).
[CrossRef]

Anczykowska, A.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett.96(11), 111106 (2010).
[CrossRef]

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Bartkiewicz, S.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett.96(11), 111106 (2010).
[CrossRef]

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett.81(20), 3705–3707 (2002).
[CrossRef]

Bjorklund, G. C.

Blanchard, R. M.

A. R. Noble-Luginbuhl, R. M. Blanchard, and R. G. Nuzzo, “Surface effects on the dynamics of liquid crystalline thin films confined in nanoscale cavities,” J. Am. Chem. Soc.122(16), 3917–3926 (2000).
[CrossRef]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Boichuk, V.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
[CrossRef]

Burland, D. M.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
[CrossRef]

Chan, K.

Y. Williams, K. Chan, J. H. Park, I. C. Khoo, B. Lewis, and T. E. Mallouk, “Electro-optical and nonlinear optical properties of semiconductor nanorod doped liquid crystals,” Proc. SPIE5936, 593613, 593613-6 (2005).
[CrossRef]

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Dyadyusha, A.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Hache, F.

Hanemann, T.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
[CrossRef]

Hou, C.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett.90(20), 201115 (2007).
[CrossRef]

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Jia, Y.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
[CrossRef]

Kaczmarek, M.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

Kajzar, F.

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett.81(20), 3705–3707 (2002).
[CrossRef]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Khoo, I. C.

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471(5-6), 221–267 (2009).
[CrossRef]

Y. Williams, K. Chan, J. H. Park, I. C. Khoo, B. Lewis, and T. E. Mallouk, “Electro-optical and nonlinear optical properties of semiconductor nanorod doped liquid crystals,” Proc. SPIE5936, 593613, 593613-6 (2005).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett.19(21), 1723–1725 (1994).
[CrossRef] [PubMed]

I. C. Khoo, “The infrared optical nonlinearities of nematic liquid crystals and novel two-wave mixing processes,” J. Mod. Opt.37(11), 1801–1813 (1990).
[CrossRef]

Kucheev, S.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
[CrossRef]

Kwon, H. J.

L. M. Lee, H. J. Kwon, R. G. Nuzzo, and K. S. Schweizer, “Effects of temperature on the alignment and electrooptical responses of a nematic nanoscale liquid crystalline film,” J. Phys. Chem. B110(32), 15782–15790 (2006).
[CrossRef] [PubMed]

Lee, L. M.

L. M. Lee, H. J. Kwon, R. G. Nuzzo, and K. S. Schweizer, “Effects of temperature on the alignment and electrooptical responses of a nematic nanoscale liquid crystalline film,” J. Phys. Chem. B110(32), 15782–15790 (2006).
[CrossRef] [PubMed]

Lewis, B.

Y. Williams, K. Chan, J. H. Park, I. C. Khoo, B. Lewis, and T. E. Mallouk, “Electro-optical and nonlinear optical properties of semiconductor nanorod doped liquid crystals,” Proc. SPIE5936, 593613, 593613-6 (2005).
[CrossRef]

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Li, H.

Lian, C.

Liang, Y.

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Mallouk, T. E.

Y. Williams, K. Chan, J. H. Park, I. C. Khoo, B. Lewis, and T. E. Mallouk, “Electro-optical and nonlinear optical properties of semiconductor nanorod doped liquid crystals,” Proc. SPIE5936, 593613, 593613-6 (2005).
[CrossRef]

Miniewicz, A.

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett.81(20), 3705–3707 (2002).
[CrossRef]

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B11(2), 320–330 (1994).
[CrossRef]

Moylan, C. R.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
[CrossRef]

Mysliwiec, J.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett.96(11), 111106 (2010).
[CrossRef]

Noble-Luginbuhl, A. R.

A. R. Noble-Luginbuhl, R. M. Blanchard, and R. G. Nuzzo, “Surface effects on the dynamics of liquid crystalline thin films confined in nanoscale cavities,” J. Am. Chem. Soc.122(16), 3917–3926 (2000).
[CrossRef]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Nuzzo, R. G.

L. M. Lee, H. J. Kwon, R. G. Nuzzo, and K. S. Schweizer, “Effects of temperature on the alignment and electrooptical responses of a nematic nanoscale liquid crystalline film,” J. Phys. Chem. B110(32), 15782–15790 (2006).
[CrossRef] [PubMed]

A. R. Noble-Luginbuhl, R. M. Blanchard, and R. G. Nuzzo, “Surface effects on the dynamics of liquid crystalline thin films confined in nanoscale cavities,” J. Am. Chem. Soc.122(16), 3917–3926 (2000).
[CrossRef]

Ostroverkhov, V.

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

Park, J. H.

Y. Williams, K. Chan, J. H. Park, I. C. Khoo, B. Lewis, and T. E. Mallouk, “Electro-optical and nonlinear optical properties of semiconductor nanorod doped liquid crystals,” Proc. SPIE5936, 593613, 593613-6 (2005).
[CrossRef]

Parka, J.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
[CrossRef]

Pei, Y.

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys.102(1), 013104 (2007).
[CrossRef]

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett.90(20), 201115 (2007).
[CrossRef]

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Poga, C.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
[CrossRef]

Poisson, F.

F. Poisson, “Nematic liquid crystal used as an instantaneous holographic medium,” Opt. Commun.6(1), 43–44 (1972).
[CrossRef]

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Reshetnyak, V.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Y. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett.25(6), 414–416 (2000).
[CrossRef] [PubMed]

Reznikov, Y.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Y. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett.25(6), 414–416 (2000).
[CrossRef] [PubMed]

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Sahraoui, B.

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett.81(20), 3705–3707 (2002).
[CrossRef]

Schweizer, K. S.

L. M. Lee, H. J. Kwon, R. G. Nuzzo, and K. S. Schweizer, “Effects of temperature on the alignment and electrooptical responses of a nematic nanoscale liquid crystalline film,” J. Phys. Chem. B110(32), 15782–15790 (2006).
[CrossRef] [PubMed]

Shiyanovskaya, I.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
[CrossRef]

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Silence, S. M.

Singer, K. D.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Y. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett.25(6), 414–416 (2000).
[CrossRef] [PubMed]

J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett.72(23), 2948–2950 (1998).
[CrossRef]

Slussarenko, S.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
[CrossRef]

St Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Stankus, J. J.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
[CrossRef]

Sun, X.

H. Zhao, C. Lian, X. Sun, and J. W. Zhang, “Nanoscale interlayer that raises response rate in photorefractive liquid crystal polymer composites,” Opt. Express19(13), 12496–12502 (2011).
[CrossRef] [PubMed]

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett.90(20), 201115 (2007).
[CrossRef]

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys.102(1), 013104 (2007).
[CrossRef]

Sznitko, L.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett.96(11), 111106 (2010).
[CrossRef]

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Tunç, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Twieg, R. J.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
[CrossRef]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Wasielewski, M. R.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science270(5243), 1794–1797 (1995).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science270(5243), 1794–1797 (1995).
[CrossRef]

Williams, Y.

Y. Williams, K. Chan, J. H. Park, I. C. Khoo, B. Lewis, and T. E. Mallouk, “Electro-optical and nonlinear optical properties of semiconductor nanorod doped liquid crystals,” Proc. SPIE5936, 593613, 593613-6 (2005).
[CrossRef]

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Yao, F.

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys.102(1), 013104 (2007).
[CrossRef]

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett.90(20), 201115 (2007).
[CrossRef]

Yoon, B. A.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science270(5243), 1794–1797 (1995).
[CrossRef]

Zhang, J.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett.90(20), 201115 (2007).
[CrossRef]

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys.102(1), 013104 (2007).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Y. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett.25(6), 414–416 (2000).
[CrossRef] [PubMed]

J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett.72(23), 2948–2950 (1998).
[CrossRef]

Zhang, J. W.

Zhao, H.

Appl. Phys. Lett.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett.90(20), 201115 (2007).
[CrossRef]

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett.81(20), 3705–3707 (2002).
[CrossRef]

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartkiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett.96(11), 111106 (2010).
[CrossRef]

J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett.72(23), 2948–2950 (1998).
[CrossRef]

Chem. Rev.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev.104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

A. R. Noble-Luginbuhl, R. M. Blanchard, and R. G. Nuzzo, “Surface effects on the dynamics of liquid crystalline thin films confined in nanoscale cavities,” J. Am. Chem. Soc.122(16), 3917–3926 (2000).
[CrossRef]

J. Appl. Phys.

V. Boichuk, S. Kucheev, J. Parka, V. Reshetnyak, Y. Reznikov, I. Shiyanovskaya, K. D. Singer, and S. Slussarenko, “Surface-mediated light-controlled Friedericksz transition in a nematic liquid crystal cell,” J. Appl. Phys.90(12), 5963–5967 (2001).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys.102(1), 013104 (2007).
[CrossRef]

J. Mod. Opt.

I. C. Khoo, “The infrared optical nonlinearities of nematic liquid crystals and novel two-wave mixing processes,” J. Mod. Opt.37(11), 1801–1813 (1990).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

L. M. Lee, H. J. Kwon, R. G. Nuzzo, and K. S. Schweizer, “Effects of temperature on the alignment and electrooptical responses of a nematic nanoscale liquid crystalline film,” J. Phys. Chem. B110(32), 15782–15790 (2006).
[CrossRef] [PubMed]

Nature

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature451(7179), 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Opt. Commun.

F. Poisson, “Nematic liquid crystal used as an instantaneous holographic medium,” Opt. Commun.6(1), 43–44 (1972).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471(5-6), 221–267 (2009).
[CrossRef]

Proc. SPIE

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE2526, 82–93 (1995).
[CrossRef]

Y. Williams, K. Chan, J. H. Park, I. C. Khoo, B. Lewis, and T. E. Mallouk, “Electro-optical and nonlinear optical properties of semiconductor nanorod doped liquid crystals,” Proc. SPIE5936, 593613, 593613-6 (2005).
[CrossRef]

Science

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science270(5243), 1794–1797 (1995).
[CrossRef]

Other

Photorefractive Materialsand Their Applications 2 Materials, P. Günter and J-P. Huignard, eds., (Springer, 2007) pp 1–640.

F. Simoni and L. Lucchetti, “Photorefractive effects in liquid crystals,” in Photorefractive Materials and Their Applications 2, P. Günter and J-P. Huignard, eds. (Springer, 2007), pp. 571–605.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram for measuring TWM and DFWM parameters in LC cells with symmetrical incident beams. Di are detectors, BS beam splitter.

Fig. 2
Fig. 2

(a) The TWM gain coefficient versus applied electric field, the inset is the energy transferring kinetics curves; (b) The detailed dynamics of the fast PR effect.

Fig. 3
Fig. 3

(a) Measured TWM energy transferring between the two main beams; (b) Diffracted intensity in a 5CB + C60 LC cell sandwiched with ZnSe substrates with a probing beam in three cases.

Fig. 4
Fig. 4

(a) and (b): photographs of the transmitted beam spots without/with applied field; (c) Dynamic curves of a selected fanning beam at different applied field.

Fig. 5
Fig. 5

(a) A dynamic curve of diffraction intensity in the DFWM configuration with a typical sample prepared by directly depositing ITO layer on top of the sample; Measured external diffraction efficiency versus applied electric field at elevated temperature; (b) Diffracted intensity in a 5CB + C60 LC cell for a continuously incident He–Ne probe beam during a program of applying an electric field.

Fig. 6
Fig. 6

(a)A dynamic curve of diffraction intensity in the two wave mixing configuration with a typical sample prepared by directly depositing ZnSe layer on top of the sample; (b) is the photo of an object and (c) its phase conjugate replica.

Fig. 7
Fig. 7

A dynamic curve of diffraction intensity in the two wave mixing configuration with a typical sample prepared with two ITO glass plates, with one covered with ZnSe layer on top of ITO layer; the faster response depicted in the black line corresponds to the case when ZnSe coated ITO glass plate was positive electrode, and the other ITO only glass plate substrate was the negative electrode; the blue line exhibits the response curve when the electrode connection were switched.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r eff (s) =2× A E 0 n 4 , r eff (p) = A E 0 n 4 cos θ int [ ( C A 1 )+( C A +1 )cos θ int ],
C EO = 1 5 N β 333 ( μ k B T ), C BR = 2 45 N( α ω α ω ) β 333 ( μ k B T ) 2 ,

Metrics