Abstract

Diversity reception technology is introduced into ultraviolet communication area in this article with theory analysis and practical experiment. The idea of diversity reception was known as a critical effective method in wireless communication area that improves the Gain significantly especially for the multi-scattering channel. A theoretical modeling and simulation method are proposed to depict the principle and feasibility of diversity reception adopted in UV communication. Besides, an experimental test-bed using ultraviolet LED and dual receiver of photomultiplier tube is setup to characterize the effects of diversity receiving in non-line-of-sight (NLOS) ultraviolet communication system. The experiment results are compared with the theoretical ones to verify the accuracy of theoretical modeling and the effect of diversity reception. Equal gain combining (EGC) method was adopted as the diversity mechanism in this paper. The research results of theory and experiment provide insight into the channel characteristics and achievable capabilities of ultraviolet communication system with diversity receiving method.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report, Washington D.C., March13, 1964.
  2. D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, December1977.
  3. D. E. Sunstein, “A scatter communications link at ultraviolet frequencies,” B.S. Thesis, MIT, Cambridge, MA, 1968.
  4. E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” final report of Aeronautical Research Associates of Princeton, Inc., NJ, February1976.
  5. W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report, Research Triangle Park, NC, January1980.
  6. J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” Proc. of Tactical Communications Conf., 253–267 (1990).
    [CrossRef]
  7. Q. He, Z. Xu, and B. M. Sadler, “Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers,” Opt. Express 18, 12226–12238 (2010).
    [CrossRef] [PubMed]
  8. H. Zhang, H. Yin, H. Jia, J. Yang, and S. Chang, “Study of effects of obstacle on non-line-of-sight ultraviolet communication links,” Opt. Express 19, 21216–21226 (2011).
    [CrossRef] [PubMed]
  9. D. Kedar and S. Arnon, “Non-line-of-sight optical wireless sensor network operating in multiscattering channel,” Appl. Opt. 45(33), 8454–8461 (2006).
    [CrossRef] [PubMed]
  10. S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am. A 26(3), 530–539 (2009).
    [CrossRef]
  11. D. Kedard and S. Arnon, “Subsea ultraviolet solar-blind broadband free-space optics communication,” Opt. Eng. 48, 046001 (2009).
    [CrossRef]
  12. C. Lavigne, G. Durand, and A. Roblin, “Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid,” Appl. Opt. 45(36), 9140–9150 (2006).
    [CrossRef] [PubMed]
  13. C. Lavigne, G. Durand, and A. Roblin, “Simulation comparison of aircraft landing performance in foggy conditions aided by different UV sensors,” Appl. Opt. 48(12), 2203–2213 (2009).
    [CrossRef] [PubMed]
  14. G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).
  15. G. J. Foschini and M. J. Gans, “On limits of wireless Communications in a fading environment when using multiple antennas,” Wireless Pers. Commun. 6, 311–335 (1998).
    [CrossRef]
  16. R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communication,” Proceedings of the IEEE 58(10), 1523–1545 (1970).
    [CrossRef]
  17. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. (John Wiley&Sons, 1995).
  18. G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17, 3929–3940 (2009).
    [CrossRef] [PubMed]
  19. X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

2011 (1)

2010 (1)

2009 (5)

2006 (3)

1998 (1)

G. J. Foschini and M. J. Gans, “On limits of wireless Communications in a fading environment when using multiple antennas,” Wireless Pers. Commun. 6, 311–335 (1998).
[CrossRef]

1970 (1)

R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communication,” Proceedings of the IEEE 58(10), 1523–1545 (1970).
[CrossRef]

Arnon, S.

Bayse, R.

J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” Proc. of Tactical Communications Conf., 253–267 (1990).
[CrossRef]

Chang, S.

Chen, G.

Ding, H.

Durand, G.

Fishburne, E. S.

E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” final report of Aeronautical Research Associates of Princeton, Inc., NJ, February1976.

Foschini, G. J.

G. J. Foschini and M. J. Gans, “On limits of wireless Communications in a fading environment when using multiple antennas,” Wireless Pers. Commun. 6, 311–335 (1998).
[CrossRef]

Gagliardi, R. M.

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. (John Wiley&Sons, 1995).

Gans, M. J.

G. J. Foschini and M. J. Gans, “On limits of wireless Communications in a fading environment when using multiple antennas,” Wireless Pers. Commun. 6, 311–335 (1998).
[CrossRef]

Han, G.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Harvey, G. L.

G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report, Washington D.C., March13, 1964.

He, H.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

He, Q.

Huang, M.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Ji, L.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Jia, H.

Junge, D. M.

D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, December1977.

Karp, S.

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. (John Wiley&Sons, 1995).

Kedar, D.

Kedard, D.

D. Kedard and S. Arnon, “Subsea ultraviolet solar-blind broadband free-space optics communication,” Opt. Eng. 48, 046001 (2009).
[CrossRef]

Kennedy, R. S.

W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report, Research Triangle Park, NC, January1980.

Lavigne, C.

Lawrence, R. S.

R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communication,” Proceedings of the IEEE 58(10), 1523–1545 (1970).
[CrossRef]

Li, H.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Li, R.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Liu, L.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Ma, X.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Model, J.

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).

Neer, M. E.

E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” final report of Aeronautical Research Associates of Princeton, Inc., NJ, February1976.

Puschell, J. J.

J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” Proc. of Tactical Communications Conf., 253–267 (1990).
[CrossRef]

Roblin, A.

Ross, W. S.

W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report, Research Triangle Park, NC, January1980.

Sadler, B. M.

Sandri, G.

E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” final report of Aeronautical Research Associates of Princeton, Inc., NJ, February1976.

Shaw, G. A.

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).

Siegel, A. M.

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).

Strohbehn, J. W.

R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communication,” Proceedings of the IEEE 58(10), 1523–1545 (1970).
[CrossRef]

Sunstein, D. E.

D. E. Sunstein, “A scatter communications link at ultraviolet frequencies,” B.S. Thesis, MIT, Cambridge, MA, 1968.

Wu, H.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Xu, Z.

Yang, D.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Yang, J.

Yin, H.

Zhang, H.

Zhang, L.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Zhang, Q.

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

Meteorological Monthly (1)

X. Ma, H. Wu, L. Ji, Q. Zhang, M. Huang, H. Li, D. Yang, H. He, L. Zhang, R. Li, L. Liu, and G. Han, “Vertical distributions of aerosols under different weather conditions in Beiiing,” Meteorological Monthly,  37(9), 1126–1133 (2009).

Opt. Eng. (1)

D. Kedard and S. Arnon, “Subsea ultraviolet solar-blind broadband free-space optics communication,” Opt. Eng. 48, 046001 (2009).
[CrossRef]

Opt. Express (3)

Proc. SPIE (1)

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).

Proceedings of the IEEE (1)

R. S. Lawrence and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communication,” Proceedings of the IEEE 58(10), 1523–1545 (1970).
[CrossRef]

Wireless Pers. Commun. (1)

G. J. Foschini and M. J. Gans, “On limits of wireless Communications in a fading environment when using multiple antennas,” Wireless Pers. Commun. 6, 311–335 (1998).
[CrossRef]

Other (7)

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed. (John Wiley&Sons, 1995).

G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report, Washington D.C., March13, 1964.

D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, December1977.

D. E. Sunstein, “A scatter communications link at ultraviolet frequencies,” B.S. Thesis, MIT, Cambridge, MA, 1968.

E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” final report of Aeronautical Research Associates of Princeton, Inc., NJ, February1976.

W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report, Research Triangle Park, NC, January1980.

J. J. Puschell and R. Bayse, “High data rate ultraviolet communication systems for the tactical battlefield,” Proc. of Tactical Communications Conf., 253–267 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

NLOS UV transmission system.

Fig. 2
Fig. 2

BER versus path loss under Tx power 43mW.

Fig. 3
Fig. 3

BER versus communication distance under 20° apex angle and 43mW power.

Fig. 4
Fig. 4

BER versus transmitted optical power for different number of receivers.

Fig. 5
Fig. 5

BER versus Data rate with 20° Tx/Rx apex angle and 43mW transmitted power.

Fig. 6
Fig. 6

LED-based UV communication test-bed with dual PMT: Transmitter location is indicated by A; Receiver was placed at various ranges along the path indicated by the line.

Fig. 7
Fig. 7

Experimental and analytical results of LOS communication of receive diversity.

Fig. 8
Fig. 8

Experiment and analytical results of receive diversity with different angles.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S N R = (∑ i = 1 M r i) 2 i = 1 M N i = 1 M N ( i = 1 M r i 2 + i , j = 1 M r i r j ) .
S N R ¯ = 1 M N ( i = 1 M r i 2 ¯ + i , j = 1 M r i r j ¯ ) ,
λ R < d < θ R ,
S N R P ¯ = 1 M N [ M ( γ + γ 2 ) + M ( M 1 ) γ 2 ] = γ + γ 2 N [ 1 + ( M 1 ) γ 2 γ + γ 2 ] = S N R 0 ¯ [ 1 + ( M 1 ) 1 1 + 1 γ ]
S N R P ¯ S N R 0 ¯ = 1 + ( M 1 ) 1 1 + 1 γ .
S N R 0 = γ s γ n ,
γ s = η P t L R b h c λ = η P t λ L R b h c ,
L = ξ R α ,
B E R = Q ( S N R ) .

Metrics