Abstract

Spectroscopic properties of bismuth doped borate, silicate and phosphate glasses have been reinvestigated in this work. It shows the typical decay time of Bi3+ is around 500ns rather than 2.7-to-3.9 μs reported by Parke and Webb at room temperature. Introduction of higher content either alkali or alkali earth into borate glasses favors the Bi3+ emission. As the contents increase excitation peak shifts regularly red while emission peak shows reverse trend. This, as revealed by Huang-Rhys factor, is due to the weakening of coupling between bismuth and glass host, and it can be interpreted within the frame of configurational coordinate diagrams. Differently, as bismuth concentration increases, both the excitation and emission shift red. The unknown origin of red emission from bismuth doped calcium or magnesium phosphate glass has been identified as Bi2+ species on the basis of excitation spectrum and emission lifetime particularly after comparing with Bi2+ doped materials. No near infrared (NIR) emission can be detected in these glasses within instrument limit.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
    [CrossRef]
  2. G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
    [CrossRef]
  3. G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
    [CrossRef]
  4. D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem.99(2), 404–408 (1992).
    [CrossRef]
  5. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
    [CrossRef]
  6. R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012).
    [CrossRef] [PubMed]
  7. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
    [CrossRef] [PubMed]
  8. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
    [CrossRef] [PubMed]
  9. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
    [CrossRef] [PubMed]
  10. M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
    [CrossRef] [PubMed]
  11. M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93, 1437–1442 (2010).
  12. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II) Subvalent monocation Bi^+ and cluster Bi_5 ^3+ luminescence in AlCl_3/ZnCl_2/BiCl_3 chloride glass,” Opt. Express20(7), 7212–7220 (2012).
    [CrossRef] [PubMed]
  13. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
    [CrossRef] [PubMed]
  14. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
    [CrossRef] [PubMed]
  15. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express13(18), 6892–6898 (2005).
    [CrossRef] [PubMed]
  16. M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
    [CrossRef] [PubMed]
  17. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  18. X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
    [CrossRef]
  19. G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
    [CrossRef]
  20. Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
    [CrossRef]
  21. Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
    [CrossRef]
  22. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
    [CrossRef]
  23. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
    [CrossRef] [PubMed]
  24. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007).
    [CrossRef]
  25. I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011).
    [CrossRef]
  26. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19561 (2011). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-20-19551
    [CrossRef] [PubMed]
  27. E. Dianov, A. Shubin, M. Melkumov, O. Medvedkov, and I. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B24(8), 1749–1755 (2007).
    [CrossRef]
  28. S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
    [CrossRef]
  29. S. Firstov, A. Shubin, V. Khopin, I. Bufetov, A. Gur’yanov, and E. Dianov, “The 20W CW fibre laser at 1460nm based on Si-associated bismuth active centers in germanosilicate fibres,” in: Proc. of 2011 Conference on Lasers and Electro-Optics (CLEO/Europe, Munich, Germany, 2011), paper PDA7.TUE.
  30. A. Luo, Z. Luo, W. Xu, V. Dvoyrin, V. Mashinsky, and E. Dianov, “Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett.8(8), 601–605 (2011).
    [CrossRef]
  31. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
    [CrossRef] [PubMed]
  32. J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen, “Near infrared broadband emission from bismuth-dysprosium codoped chalcohalide glasses,” Chin. Phys. Lett.24(7), 1958–1960 (2007).
    [CrossRef]
  33. G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, “Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses,” J. Eur. Ceram. Soc.28(16), 3189–3191 (2008).
    [CrossRef]
  34. M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
    [CrossRef]
  35. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
    [CrossRef]
  36. S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009).
    [CrossRef]
  37. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
    [CrossRef]
  38. G. Blasse and A. van der Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979).
    [CrossRef]
  39. G. Boulon, B. Moine, and J.-C. Bourcet, “Spectroscopic properties of 3P1 and 3P0 excited states of Bi3+ ions in germanate glass,” Phys. Rev. B22(3), 1163–1169 (1980).
    [CrossRef]
  40. G. Boulon, B. Moine, J. C. Bourcet, R. Reisefeld, and Y. Kalisky, “Time resolved spectroscopy about 3P1 and 3P0 levels in Bi3+ doped germanate glasses,” J. Lumin.18–19, 924–928 (1979).
    [CrossRef]
  41. R. Reisfeld and L. Boehm, “Optical properties of bismuth in germanate, borax and phosphate glasses,” J. Non-Cryst. Solids16(1), 83–92 (1974).
    [CrossRef]
  42. R. Reisfeld and Y. Kalisky, “Energy transfer between Bi3+ and Nd3+ in germanate glass,” Chem. Phys. Lett.50(2), 199–201 (1977).
    [CrossRef]
  43. S. Parke and R. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973).
    [CrossRef]
  44. M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
    [CrossRef]
  45. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
    [CrossRef]

2012

2011

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
[CrossRef] [PubMed]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19561 (2011). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-20-19551
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

A. Luo, Z. Luo, W. Xu, V. Dvoyrin, V. Mashinsky, and E. Dianov, “Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett.8(8), 601–605 (2011).
[CrossRef]

I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011).
[CrossRef]

2010

M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93, 1437–1442 (2010).

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

2009

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009).
[CrossRef]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

2008

G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, “Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses,” J. Eur. Ceram. Soc.28(16), 3189–3191 (2008).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

2007

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007).
[CrossRef]

J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen, “Near infrared broadband emission from bismuth-dysprosium codoped chalcohalide glasses,” Chin. Phys. Lett.24(7), 1958–1960 (2007).
[CrossRef]

E. Dianov, A. Shubin, M. Melkumov, O. Medvedkov, and I. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B24(8), 1749–1755 (2007).
[CrossRef]

2005

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express13(18), 6892–6898 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

2004

1994

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

1992

D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem.99(2), 404–408 (1992).
[CrossRef]

1980

G. Boulon, B. Moine, and J.-C. Bourcet, “Spectroscopic properties of 3P1 and 3P0 excited states of Bi3+ ions in germanate glass,” Phys. Rev. B22(3), 1163–1169 (1980).
[CrossRef]

1979

G. Boulon, B. Moine, J. C. Bourcet, R. Reisefeld, and Y. Kalisky, “Time resolved spectroscopy about 3P1 and 3P0 levels in Bi3+ doped germanate glasses,” J. Lumin.18–19, 924–928 (1979).
[CrossRef]

G. Blasse and A. van der Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979).
[CrossRef]

1977

R. Reisfeld and Y. Kalisky, “Energy transfer between Bi3+ and Nd3+ in germanate glass,” Chem. Phys. Lett.50(2), 199–201 (1977).
[CrossRef]

1974

R. Reisfeld and L. Boehm, “Optical properties of bismuth in germanate, borax and phosphate glasses,” J. Non-Cryst. Solids16(1), 83–92 (1974).
[CrossRef]

1973

S. Parke and R. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973).
[CrossRef]

1968

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Akada, T.

Bigot, L.

I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011).
[CrossRef]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007).
[CrossRef]

Blasse, G.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem.99(2), 404–408 (1992).
[CrossRef]

G. Blasse and A. van der Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979).
[CrossRef]

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Boehm, L.

R. Reisfeld and L. Boehm, “Optical properties of bismuth in germanate, borax and phosphate glasses,” J. Non-Cryst. Solids16(1), 83–92 (1974).
[CrossRef]

Boulon, G.

G. Boulon, B. Moine, and J.-C. Bourcet, “Spectroscopic properties of 3P1 and 3P0 excited states of Bi3+ ions in germanate glass,” Phys. Rev. B22(3), 1163–1169 (1980).
[CrossRef]

G. Boulon, B. Moine, J. C. Bourcet, R. Reisefeld, and Y. Kalisky, “Time resolved spectroscopy about 3P1 and 3P0 levels in Bi3+ doped germanate glasses,” J. Lumin.18–19, 924–928 (1979).
[CrossRef]

Bourcet, J. C.

G. Boulon, B. Moine, J. C. Bourcet, R. Reisefeld, and Y. Kalisky, “Time resolved spectroscopy about 3P1 and 3P0 levels in Bi3+ doped germanate glasses,” J. Lumin.18–19, 924–928 (1979).
[CrossRef]

Bourcet, J.-C.

G. Boulon, B. Moine, and J.-C. Bourcet, “Spectroscopic properties of 3P1 and 3P0 excited states of Bi3+ ions in germanate glass,” Phys. Rev. B22(3), 1163–1169 (1980).
[CrossRef]

Bouwmans, G.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007).
[CrossRef]

Bril, A.

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Bufetov, I.

S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

E. Dianov, A. Shubin, M. Melkumov, O. Medvedkov, and I. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B24(8), 1749–1755 (2007).
[CrossRef]

Bufetov, I. A.

Cao, R.

Chen, D.

G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, “Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses,” J. Eur. Ceram. Soc.28(16), 3189–3191 (2008).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen, “Near infrared broadband emission from bismuth-dysprosium codoped chalcohalide glasses,” Chin. Phys. Lett.24(7), 1958–1960 (2007).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express13(18), 6892–6898 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Chen, G.

G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, “Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses,” J. Eur. Ceram. Soc.28(16), 3189–3191 (2008).
[CrossRef]

J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen, “Near infrared broadband emission from bismuth-dysprosium codoped chalcohalide glasses,” Chin. Phys. Lett.24(7), 1958–1960 (2007).
[CrossRef]

Chi, G.

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

Da, N.

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

Dianov, E.

A. Luo, Z. Luo, W. Xu, V. Dvoyrin, V. Mashinsky, and E. Dianov, “Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett.8(8), 601–605 (2011).
[CrossRef]

S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

E. Dianov, A. Shubin, M. Melkumov, O. Medvedkov, and I. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B24(8), 1749–1755 (2007).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Dianov, E. M.

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Douay, M.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007).
[CrossRef]

Dvoyrin, V.

A. Luo, Z. Luo, W. Xu, V. Dvoyrin, V. Mashinsky, and E. Dianov, “Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett.8(8), 601–605 (2011).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Fattakhova, Z. T.

Favre, A.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007).
[CrossRef]

Firstov, S.

S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Firstov, S. V.

Firstova, E. G.

Folkerts, H.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

Gur’yanov, A.

S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Guryanov, A. N.

Gur'yanov, A.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Hamstra, M.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

Hao, J.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009).
[CrossRef]

Haula, E. V.

Hewak, D. W.

Hughes, M. A.

Jha, A.

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

Jiang, N.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009).
[CrossRef]

Jiang, X.

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Kalisky, Y.

G. Boulon, B. Moine, J. C. Bourcet, R. Reisefeld, and Y. Kalisky, “Time resolved spectroscopy about 3P1 and 3P0 levels in Bi3+ doped germanate glasses,” J. Lumin.18–19, 924–928 (1979).
[CrossRef]

R. Reisfeld and Y. Kalisky, “Energy transfer between Bi3+ and Nd3+ in germanate glass,” Chem. Phys. Lett.50(2), 199–201 (1977).
[CrossRef]

Kazin, P. E.

Khopin, V.

S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Khopin, V. F.

Korchak, V. N.

Krolikowski, S.

Lei, W.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009).
[CrossRef]

Levchenko, A. E.

Li, C.

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

Liu, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

Lou, K.

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

Luo, A.

A. Luo, Z. Luo, W. Xu, V. Dvoyrin, V. Mashinsky, and E. Dianov, “Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett.8(8), 601–605 (2011).
[CrossRef]

Luo, Z.

A. Luo, Z. Luo, W. Xu, V. Dvoyrin, V. Mashinsky, and E. Dianov, “Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett.8(8), 601–605 (2011).
[CrossRef]

Mashinsky, V.

A. Luo, Z. Luo, W. Xu, V. Dvoyrin, V. Mashinsky, and E. Dianov, “Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett.8(8), 601–605 (2011).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Medvedkov, O.

S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

E. Dianov, A. Shubin, M. Melkumov, O. Medvedkov, and I. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B24(8), 1749–1755 (2007).
[CrossRef]

Meijerink, A.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Mel’kumov, M.

S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Melkumov, M.

Melkumov, M. A.

Meng, X.

Moine, B.

G. Boulon, B. Moine, and J.-C. Bourcet, “Spectroscopic properties of 3P1 and 3P0 excited states of Bi3+ ions in germanate glass,” Phys. Rev. B22(3), 1163–1169 (1980).
[CrossRef]

G. Boulon, B. Moine, J. C. Bourcet, R. Reisefeld, and Y. Kalisky, “Time resolved spectroscopy about 3P1 and 3P0 levels in Bi3+ doped germanate glasses,” J. Lumin.18–19, 924–928 (1979).
[CrossRef]

Nomes, M.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Ohishi, Y.

Parke, S.

S. Parke and R. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973).
[CrossRef]

Peng, M.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93, 1437–1442 (2010).

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express13(18), 6892–6898 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Pureur, V.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007).
[CrossRef]

Qiu, J.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009).
[CrossRef]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express13(18), 6892–6898 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Razdobreev, I.

I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011).
[CrossRef]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007).
[CrossRef]

Reisefeld, R.

G. Boulon, B. Moine, J. C. Bourcet, R. Reisefeld, and Y. Kalisky, “Time resolved spectroscopy about 3P1 and 3P0 levels in Bi3+ doped germanate glasses,” J. Lumin.18–19, 924–928 (1979).
[CrossRef]

Reisfeld, R.

R. Reisfeld and Y. Kalisky, “Energy transfer between Bi3+ and Nd3+ in germanate glass,” Chem. Phys. Lett.50(2), 199–201 (1977).
[CrossRef]

R. Reisfeld and L. Boehm, “Optical properties of bismuth in germanate, borax and phosphate glasses,” J. Non-Cryst. Solids16(1), 83–92 (1974).
[CrossRef]

Ren, J.

J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen, “Near infrared broadband emission from bismuth-dysprosium codoped chalcohalide glasses,” Chin. Phys. Lett.24(7), 1958–1960 (2007).
[CrossRef]

Romanov, A. N.

Schmidt, M. A.

Schwefel, H. G.

Semenov, S. L.

Shang, J.

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

Shubin, A.

S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

E. Dianov, A. Shubin, M. Melkumov, O. Medvedkov, and I. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B24(8), 1749–1755 (2007).
[CrossRef]

Shubin, A. V.

Song, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

Sprenger, B.

Stiegelschmitt, A.

Sulimov, V. B.

Suzuki, T.

Trusov, L. A.

Tsvetkov, V. B.

Umnikov, A.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Usovich, O. V.

van der Steen, A.

G. Blasse and A. van der Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979).
[CrossRef]

van der Voort, D.

D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem.99(2), 404–408 (1992).
[CrossRef]

Veber, A. A.

Vel’miskin, V. V.

Wang, C.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

Wang, R.

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

Wang, W.

G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, “Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses,” J. Eur. Ceram. Soc.28(16), 3189–3191 (2008).
[CrossRef]

Webb, R.

S. Parke and R. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973).
[CrossRef]

Wondraczek, L.

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Photoluminescence of Sr2P2O7:Bi2+ as a red phosphor for additive light generation,” Opt. Lett.35(15), 2544–2546 (2010).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93, 1437–1442 (2010).

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett.34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

Wu, B.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

Wu, E.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009).
[CrossRef]

Xu, W.

A. Luo, Z. Luo, W. Xu, V. Dvoyrin, V. Mashinsky, and E. Dianov, “Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett.8(8), 601–605 (2011).
[CrossRef]

Xu, Y.

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, “Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses,” J. Eur. Ceram. Soc.28(16), 3189–3191 (2008).
[CrossRef]

J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen, “Near infrared broadband emission from bismuth-dysprosium codoped chalcohalide glasses,” Chin. Phys. Lett.24(7), 1958–1960 (2007).
[CrossRef]

Yang, G.

G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, “Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses,” J. Eur. Ceram. Soc.28(16), 3189–3191 (2008).
[CrossRef]

J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen, “Near infrared broadband emission from bismuth-dysprosium codoped chalcohalide glasses,” Chin. Phys. Lett.24(7), 1958–1960 (2007).
[CrossRef]

Yang, I.

Yang, Y.

G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, “Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses,” J. Eur. Ceram. Soc.28(16), 3189–3191 (2008).
[CrossRef]

Yang, Z.

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

Yashkov, M.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Yin, Z.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

Yu, X.

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

Zeng, H.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009).
[CrossRef]

G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, “Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses,” J. Eur. Ceram. Soc.28(16), 3189–3191 (2008).
[CrossRef]

J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen, “Near infrared broadband emission from bismuth-dysprosium codoped chalcohalide glasses,” Chin. Phys. Lett.24(7), 1958–1960 (2007).
[CrossRef]

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

Zhang, Q.

Zhao, Q.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

Zhou, D.

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

Zhou, S.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009).
[CrossRef]

Zhu, C.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express13(18), 6892–6898 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett.30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett.29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Zhu, K.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

Zollfrank, C.

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

Zuidema, J.

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Appl. Phys. Lett.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett.90(3), 031103 (2007).
[CrossRef]

Chem. Phys. Lett.

R. Reisfeld and Y. Kalisky, “Energy transfer between Bi3+ and Nd3+ in germanate glass,” Chem. Phys. Lett.50(2), 199–201 (1977).
[CrossRef]

Chin. Phys. Lett.

J. Ren, D. Chen, G. Yang, Y. Xu, H. Zeng, and G. Chen, “Near infrared broadband emission from bismuth-dysprosium codoped chalcohalide glasses,” Chin. Phys. Lett.24(7), 1958–1960 (2007).
[CrossRef]

J. Alloy. Comp.

Z. Yang, Z. Liu, Z. Song, D. Zhou, Z. Yin, K. Zhu, and J. Qiu, “Influence of optical basicity on broadband near infrared emission in bismuth doped aluminosilicate glasses,” J. Alloy. Comp.509(24), 6816–6818 (2011).
[CrossRef]

J. Am. Ceram. Soc.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc.92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Orange-to-red emission from Bi2+ and alkaline earth codoped strontium borate phosphors for white light emitting diodes,” J. Am. Ceram. Soc.93, 1437–1442 (2010).

J. Chem. Phys.

G. Blasse and A. Bril, “Investigations on Bi3 +-activated phosphors,” J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

J. Eur. Ceram. Soc.

G. Yang, D. Chen, W. Wang, Y. Xu, H. Zeng, Y. Yang, and G. Chen, “Effects of thermal treatment on broadband near-infrared emission from Bi-doped chalcohalide glasses,” J. Eur. Ceram. Soc.28(16), 3189–3191 (2008).
[CrossRef]

J. Lumin.

Z. Song, Z. Yang, D. Zhou, Z. Yin, C. Li, R. Wang, J. Shang, K. Lou, Y. Xu, X. Yu, and J. Qiu, “The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass,” J. Lumin.131(12), 2593–2596 (2011).
[CrossRef]

G. Boulon, B. Moine, J. C. Bourcet, R. Reisefeld, and Y. Kalisky, “Time resolved spectroscopy about 3P1 and 3P0 levels in Bi3+ doped germanate glasses,” J. Lumin.18–19, 924–928 (1979).
[CrossRef]

J. Mater. Chem.

M. Hamstra, H. Folkerts, and G. Blasse, “Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates,” J. Mater. Chem.4(8), 1349–1350 (1994).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem.19(5), 627–630 (2009).
[CrossRef]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem.19(26), 4603–4608 (2009).
[CrossRef]

J. Non-Cryst. Solids

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids357(11-13), 2241–2245 (2011).
[CrossRef]

R. Reisfeld and L. Boehm, “Optical properties of bismuth in germanate, borax and phosphate glasses,” J. Non-Cryst. Solids16(1), 83–92 (1974).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids351(30-32), 2388–2393 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

G. Blasse, A. Meijerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB4O7:Bi),” J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

S. Parke and R. Webb, “The optical properties of thallium, lead and bismuth in oxide glasses,” J. Phys. Chem. Solids34(1), 85–95 (1973).
[CrossRef]

J. Phys. Condens. Matter

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter21(28), 285106 (2009).
[CrossRef] [PubMed]

J. Solid State Chem.

D. van der Voort and G. Blasse, “Luminescence of CaSO4:Bi3+, a small-offset case,” J. Solid State Chem.99(2), 404–408 (1992).
[CrossRef]

Laser Phys. Lett.

A. Luo, Z. Luo, W. Xu, V. Dvoyrin, V. Mashinsky, and E. Dianov, “Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett.8(8), 601–605 (2011).
[CrossRef]

Opt. Express

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19561 (2011). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-20-19551
[CrossRef] [PubMed]

R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3,” Opt. Express20(3), 2562–2571 (2012).
[CrossRef] [PubMed]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II) Subvalent monocation Bi^+ and cluster Bi_5 ^3+ luminescence in AlCl_3/ZnCl_2/BiCl_3 chloride glass,” Opt. Express20(7), 7212–7220 (2012).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers,” Opt. Express18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3,” Opt. Express13(18), 6892–6898 (2005).
[CrossRef] [PubMed]

M. Peng, N. Zhang, L. Wondraczek, J. Qiu, Z. Yang, and Q. Zhang, “Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses,” Opt. Express19(21), 20799–20807 (2011).
[CrossRef] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater.

I. Razdobreev and L. Bigot, “On the multiplicity of bismuth active centres in germano-aluminosilicate preform,” Opt. Mater.33(6), 973–977 (2011).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater.29(5), 556–561 (2007).
[CrossRef]

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater.33(1), 14–18 (2010).
[CrossRef]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater.31(6), 945–948 (2009).
[CrossRef]

Phys. Rev. B

G. Boulon, B. Moine, and J.-C. Bourcet, “Spectroscopic properties of 3P1 and 3P0 excited states of Bi3+ ions in germanate glass,” Phys. Rev. B22(3), 1163–1169 (1980).
[CrossRef]

Quantum Electron.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

S. Firstov, A. Shubin, V. Khopin, M. Mel’kumov, I. Bufetov, O. Medvedkov, A. Gur’yanov, and E. Dianov, “Bismuth-doped germanosilicate fiber laser with 20-W output power at 1460nm,” Quantum Electron.41(7), 581–583 (2011).
[CrossRef]

Solid State Commun.

G. Blasse and A. van der Steen, “Luminescence characteristics of Bi3+-activated oxides,” Solid State Commun.31(12), 993–994 (1979).
[CrossRef]

Other

S. Firstov, A. Shubin, V. Khopin, I. Bufetov, A. Gur’yanov, and E. Dianov, “The 20W CW fibre laser at 1460nm based on Si-associated bismuth active centers in germanosilicate fibres,” in: Proc. of 2011 Conference on Lasers and Electro-Optics (CLEO/Europe, Munich, Germany, 2011), paper PDA7.TUE.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Excitation (1’, 2’, 3′, λem = 429nm) and emission (1, 2, 3, λex = 305nm) spectra of xNa2O·(99.5-x)B2O3·0.5Bi2O3 (x = 25, 30, 35) glasses.

Fig. 3
Fig. 3

(A) Excitation (a, λem = 396nm) and emission (b, λex = 299nm) spectra and (B) fluorescence decay curve (λex = 299nm, λem = 395nm) of 30Na2O·69.5SiO2·0.5Bi2O3 glass. Inset depicts the sample image after annealed but before polished.

Fig. 2
Fig. 2

Excitation (curves 1’, 2’, 3′, λem = 438nm; 4’, 5′, λem = 416nm) and emission (curves 1, 2, 3, 4, 5, λex = 302nm) spectra of xK2O·(99.5-x)B2O3·0.5Bi2O3 (x = 20, 25, 30) and xLi2O·(99.5-x)B2O3·0.5Bi2O3 (x = 20, 25) glasses.

Fig. 4
Fig. 4

Excitation (curves 1’, 2’, 3′, 4’, 5′, 6’, λem = 430nm) and emission (curves 1, 2, 3, 4, 5, 6, λex = 305nm) spectra of 35Na2O·(65-x)B2O3·xBi2O3 (x = 0.25, 0.5, 1.0, 1.5, 2.0, 2.5) glasses.

Fig. 5
Fig. 5

FTIR spectra of xBaO·(99.5-x)B2O3·0.5Bi2O3 (x = 20, 25, 33) and xNa2O·(99.5-x)B2O3·0.5Bi2O3 (x = 25, 30, 35) glasses

Fig. 6
Fig. 6

Configurational coordinate diagrams of bismuth doped alkali borate glasses: (A) for lower and (B) for higher content of alkali oxide. 3P0 and 3P2 states are marked as broken lines since the transitions from 1S0 to the states are forbidden. Horizontal lines denote the vibrational levels. Blue solid lines refer to the nonradiation relaxations. Upward red solid lines refer to the excitation processes and downward black solid lines to the emission process. ΔQ means the offset of parabolas.

Fig. 7
Fig. 7

(A) Excitation (a: λem = 712nm; b: λem = 640nm) and emission (c: λex = 285nm; d: λex = 337nm; e: λex = 516nm) spectra and (B) Decay curves (a: λem = 712nm, λex = 285nm, τ = 4.417μs; b: λem = 709nm, λex = 345nm, τ = 6.041μs; c: λem = 704nm, λex = 500nm, τ = 7.082μs) of 49.5CaO·50P2O5·0.5Bi2O3 glass.

Tables (2)

Tables Icon

Table 1 Excitation (λex in nm), emission (λem in nm), Stokes shift (SS in cm−1), Huang-Rhys parameter S and fluorescence lifetime (τ1 in ns by this work; τ2 in μs by Parke and Webb) of Bi3+ doped glasses. – means unobserved or unreported.

Tables Icon

Table 2 Excitation (λex in nm), emission (λem in nm) and fluorescence lifetime (τBi2+ in μs) of Bi2+ doped glasses and crystals. “–” means unobserved or unreported.

Metrics