I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).
L. J. Cashdollar and K. P. Chen, “Fiber bragg grating flow sensors powered by in–fiber light,” IEEE Sensors 5(6), 1327–1331 (2005).
[Crossref]
R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[Crossref]
K. Hotate and M. Tanaka, “Distributed fiber brillouin strain sensing with 1cm spatial resolution by correlation-based continuous wave technique,” Proc. SPIE 4185, 647–650 (2000).
M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[Crossref]
P. C. Wait and T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122(4–6), 141–146 (1996).
[Crossref]
T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
T. Horiguchi and M. Tateda, “Botda-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]
M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[Crossref]
R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[Crossref]
I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).
M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[Crossref]
A. Brown, B. Colpitts, and K. Brown, “Dark-pulse brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
[Crossref]
M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[Crossref]
H. H. Bruun, Hot-wire Anemometry: Principles and Signal Analysis (Oxford University Press, 1995)
L. J. Cashdollar and K. P. Chen, “Fiber bragg grating flow sensors powered by in–fiber light,” IEEE Sensors 5(6), 1327–1331 (2005).
[Crossref]
T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot-wire grid,” Opt. Express 20(8), 8240–8249 (2012).
[Crossref]
[PubMed]
L. J. Cashdollar and K. P. Chen, “Fiber bragg grating flow sensors powered by in–fiber light,” IEEE Sensors 5(6), 1327–1331 (2005).
[Crossref]
R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[Crossref]
M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[Crossref]
F. P. Incropera and D. P DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 2002)
I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).
T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
T. Horiguchi and M. Tateda, “Botda-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]
K. Hotate and M. Tanaka, “Distributed fiber brillouin strain sensing with 1cm spatial resolution by correlation-based continuous wave technique,” Proc. SPIE 4185, 647–650 (2000).
F. P. Incropera and D. P DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 2002)
T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).
R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[Crossref]
P. C. Wait and T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122(4–6), 141–146 (1996).
[Crossref]
R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[Crossref]
K. Hotate and M. Tanaka, “Distributed fiber brillouin strain sensing with 1cm spatial resolution by correlation-based continuous wave technique,” Proc. SPIE 4185, 647–650 (2000).
T. Horiguchi and M. Tateda, “Botda-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[Crossref]
P. C. Wait and T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122(4–6), 141–146 (1996).
[Crossref]
I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).
R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[Crossref]
R. Bernini, L. Crocco, A. Minardo, F. Soldovieri, and L. Zeni, “All frequency domain distributed fiber-optic brillouin sensing,” IEEE Sensors 3(1), 36–43 (2003).
[Crossref]
L. J. Cashdollar and K. P. Chen, “Fiber bragg grating flow sensors powered by in–fiber light,” IEEE Sensors 5(6), 1327–1331 (2005).
[Crossref]
T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun. E76-B(4), 382–390 (1993).
P. C. Wait and T. P. Newson, “Landau Placzek ratio applied to distributed fibre sensing,” Opt. Commun. 122(4–6), 141–146 (1996).
[Crossref]
T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot-wire grid,” Opt. Express 20(8), 8240–8249 (2012).
[Crossref]
[PubMed]
S. Gao, A. Zhang, H. Tam, L. Cho, and C. Lu, “All–optical fiber anemometer based on laser heated fiber bragg gratings,” Opt. Express 19(11), 10124–10130 (2011).
[Crossref]
[PubMed]
I. Latka, T. Bosselmann, W. Ecke, and M. Willsch, “Monitoring of inhomogeneous flow distributions using fibre–optic bragg grating temperature sensor arrays,” Proc. SPIE 6189, 6189G-1 (2006).
M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Brillouin scattering based strain sensing,” Proc. SPIE 3670, 352–358 (1999).
[Crossref]
K. Hotate and M. Tanaka, “Distributed fiber brillouin strain sensing with 1cm spatial resolution by correlation-based continuous wave technique,” Proc. SPIE 4185, 647–650 (2000).
H. H. Bruun, Hot-wire Anemometry: Principles and Signal Analysis (Oxford University Press, 1995)
F. P. Incropera and D. P DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, 2002)