Abstract

We report on improved gain and spectral control in co-extruded all-polymer multilayer distributed feedback (DFB) lasers achieved by folding and deliberate modification of the center “defect” layer. Because DFB laser gain is greater at spectral defects inside the reflection band than at the band edges, manipulation of structural defects can be used to alter spectral defects and thereby tune the output wavelength and improve laser efficiency. By experimentally terracing the layer that becomes the center of the fold, we tuned the lasing wavelength across the reflection stop-band (∼25 nm) in controllable, discrete steps. The increased density of states associated with the defect resulted in a lower lasing threshold and, typically, a 3- to 6-fold increase in lasing efficiency over non-folded samples.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
    [CrossRef]
  2. K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
    [CrossRef] [PubMed]
  3. T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
    [CrossRef]
  4. T. Komikado, S. Yoshida, and S. Umegaki, “Surface-emitting distributed-feedback dye laser of a polymer multilayer fabricated by spin coating,” Appl. Phys. Lett. 89, 061123 (2006).
    [CrossRef]
  5. H. Takeuchi, K. Natsume, S. Suzuki, and H. Sakata, “Microcavity distributed-beedback laser using dye-doped polymeric thin films,” Electron. Lett. 43, 30–32 (2007).
    [CrossRef]
  6. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
    [CrossRef]
  7. O. Garcia, R. Sastre, I. Garcia-Moreno, V. Martin, and A. Costela, “New laser hybrid materials based on POSS copolymers,” J. Phys. Chem. C 112, 14710–14713 (2008).
    [CrossRef]
  8. J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).
  9. G. Mao, J. Andrews, M. Crescimanno, K. D. Singer, E. Baer, A. Hiltner, H. Song, and B. Shakya, “Co-extruded mechanically tunable multilayer elastomer laser,” Opt. Mater. Express 1, 108–114 (2011).
    [CrossRef]
  10. E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
    [CrossRef]
  11. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  12. H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, “Optical tuning and switching of photonic defect modes in cholesteric liquid crystals,” Appl. Phys. Lett. 90, 071107 (2007).
    [CrossRef]
  13. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
    [CrossRef] [PubMed]
  14. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Dowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
    [CrossRef]
  15. S. Nojima, “Enhancement of optical gain in two dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys., Part 2  37, L565–L567 (1998).
    [CrossRef]
  16. J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
    [CrossRef]
  17. S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
    [CrossRef]
  18. V. Milner and A. Z. Genack, “Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
    [CrossRef] [PubMed]
  19. P. Yeh, Optical Waves in Layered Media (Wiley Interscience, 2005).
  20. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
    [CrossRef]
  21. J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals; Molding the Flow of Light (Princeton, 2008) p. 147.
    [PubMed]
  22. N. Le Thomas, V. Zabelin, and R. Houdré, “Influence of residual disorder on the anticrossing of Bloch modes probed in k space,” Phys. Rev. B 78, 125301 (2008).
    [CrossRef]
  23. I. Rendina, F. Coppinger, B. Jalali, C. Lam, and E. Yablanovich, “Coupled Cavity Distributed-Resonance Photodetectors,” SPIE Photonics West ’983278, Integrated Optical Devices II, San Jose, Ca, Jan. 28–30 (1998).
    [PubMed]

2011 (1)

2010 (1)

J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).

2009 (1)

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

2008 (3)

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

O. Garcia, R. Sastre, I. Garcia-Moreno, V. Martin, and A. Costela, “New laser hybrid materials based on POSS copolymers,” J. Phys. Chem. C 112, 14710–14713 (2008).
[CrossRef]

N. Le Thomas, V. Zabelin, and R. Houdré, “Influence of residual disorder on the anticrossing of Bloch modes probed in k space,” Phys. Rev. B 78, 125301 (2008).
[CrossRef]

2007 (4)

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

H. Takeuchi, K. Natsume, S. Suzuki, and H. Sakata, “Microcavity distributed-beedback laser using dye-doped polymeric thin films,” Electron. Lett. 43, 30–32 (2007).
[CrossRef]

H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, “Optical tuning and switching of photonic defect modes in cholesteric liquid crystals,” Appl. Phys. Lett. 90, 071107 (2007).
[CrossRef]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

2006 (2)

J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

T. Komikado, S. Yoshida, and S. Umegaki, “Surface-emitting distributed-feedback dye laser of a polymer multilayer fabricated by spin coating,” Appl. Phys. Lett. 89, 061123 (2006).
[CrossRef]

2005 (1)

V. Milner and A. Z. Genack, “Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[CrossRef] [PubMed]

2003 (1)

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef] [PubMed]

1999 (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[CrossRef]

1998 (2)

S. Nojima, “Enhancement of optical gain in two dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys., Part 2  37, L565–L567 (1998).
[CrossRef]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Dowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

1991 (1)

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Andrews, J.

G. Mao, J. Andrews, M. Crescimanno, K. D. Singer, E. Baer, A. Hiltner, H. Song, and B. Shakya, “Co-extruded mechanically tunable multilayer elastomer laser,” Opt. Mater. Express 1, 108–114 (2011).
[CrossRef]

J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

Baer, E.

G. Mao, J. Andrews, M. Crescimanno, K. D. Singer, E. Baer, A. Hiltner, H. Song, and B. Shakya, “Co-extruded mechanically tunable multilayer elastomer laser,” Opt. Mater. Express 1, 108–114 (2011).
[CrossRef]

J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

Bawendi, M.

J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Dowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Brommer, K. D.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Caruge, J.-M.

J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Coppinger, F.

I. Rendina, F. Coppinger, B. Jalali, C. Lam, and E. Yablanovich, “Coupled Cavity Distributed-Resonance Photodetectors,” SPIE Photonics West ’983278, Integrated Optical Devices II, San Jose, Ca, Jan. 28–30 (1998).
[PubMed]

Costela, A.

O. Garcia, R. Sastre, I. Garcia-Moreno, V. Martin, and A. Costela, “New laser hybrid materials based on POSS copolymers,” J. Phys. Chem. C 112, 14710–14713 (2008).
[CrossRef]

Crescimanno, M.

Dowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Dowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Dowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Feldmann, J.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Finkelmann, H.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef] [PubMed]

Fujii, A.

H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, “Optical tuning and switching of photonic defect modes in cholesteric liquid crystals,” Appl. Phys. Lett. 90, 071107 (2007).
[CrossRef]

Garcia, O.

O. Garcia, R. Sastre, I. Garcia-Moreno, V. Martin, and A. Costela, “New laser hybrid materials based on POSS copolymers,” J. Phys. Chem. C 112, 14710–14713 (2008).
[CrossRef]

Garcia-Moreno, I.

O. Garcia, R. Sastre, I. Garcia-Moreno, V. Martin, and A. Costela, “New laser hybrid materials based on POSS copolymers,” J. Phys. Chem. C 112, 14710–14713 (2008).
[CrossRef]

Genack, A. Z.

V. Milner and A. Z. Genack, “Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[CrossRef] [PubMed]

Gmitter, T. J.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Gombert, A.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Ha, N. Y.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Haugeneder, A.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Hilmer, M.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Hiltner, A.

G. Mao, J. Andrews, M. Crescimanno, K. D. Singer, E. Baer, A. Hiltner, H. Song, and B. Shakya, “Co-extruded mechanically tunable multilayer elastomer laser,” Opt. Mater. Express 1, 108–114 (2011).
[CrossRef]

J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

Houdré, R.

N. Le Thomas, V. Zabelin, and R. Houdré, “Influence of residual disorder on the anticrossing of Bloch modes probed in k space,” Phys. Rev. B 78, 125301 (2008).
[CrossRef]

Inganäs, O.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[CrossRef]

Ishikawa, K.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Jalali, B.

I. Rendina, F. Coppinger, B. Jalali, C. Lam, and E. Yablanovich, “Coupled Cavity Distributed-Resonance Photodetectors,” SPIE Photonics West ’983278, Integrated Optical Devices II, San Jose, Ca, Jan. 28–30 (1998).
[PubMed]

Jeong, S. M.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Joannapolous, J. D.

J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals; Molding the Flow of Light (Princeton, 2008) p. 147.
[PubMed]

Joannopoulos, J. D.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Johnson, S. G.

J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals; Molding the Flow of Light (Princeton, 2008) p. 147.
[PubMed]

Kallinger, C.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Kazmierczak, T.

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

Komikado, T.

T. Komikado, S. Yoshida, and S. Umegaki, “Surface-emitting distributed-feedback dye laser of a polymer multilayer fabricated by spin coating,” Appl. Phys. Lett. 89, 061123 (2006).
[CrossRef]

Kooi, S.

J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Lam, C.

I. Rendina, F. Coppinger, B. Jalali, C. Lam, and E. Yablanovich, “Coupled Cavity Distributed-Resonance Photodetectors,” SPIE Photonics West ’983278, Integrated Optical Devices II, San Jose, Ca, Jan. 28–30 (1998).
[PubMed]

Le Thomas, N.

N. Le Thomas, V. Zabelin, and R. Houdré, “Influence of residual disorder on the anticrossing of Bloch modes probed in k space,” Phys. Rev. B 78, 125301 (2008).
[CrossRef]

Lee, C. H.

H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, “Optical tuning and switching of photonic defect modes in cholesteric liquid crystals,” Appl. Phys. Lett. 90, 071107 (2007).
[CrossRef]

Lee, W.

J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Lemmer, U.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Lott, J.

J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

Mao, G.

Martin, V.

O. Garcia, R. Sastre, I. Garcia-Moreno, V. Martin, and A. Costela, “New laser hybrid materials based on POSS copolymers,” J. Phys. Chem. C 112, 14710–14713 (2008).
[CrossRef]

Meade, R. D.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals; Molding the Flow of Light (Princeton, 2008) p. 147.
[PubMed]

Milner, V.

V. Milner and A. Z. Genack, “Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[CrossRef] [PubMed]

Miura, Y.

H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, “Optical tuning and switching of photonic defect modes in cholesteric liquid crystals,” Appl. Phys. Lett. 90, 071107 (2007).
[CrossRef]

Mullen, K.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Natsume, K.

H. Takeuchi, K. Natsume, S. Suzuki, and H. Sakata, “Microcavity distributed-beedback laser using dye-doped polymeric thin films,” Electron. Lett. 43, 30–32 (2007).
[CrossRef]

Nishimura, S.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Nojima, S.

S. Nojima, “Enhancement of optical gain in two dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys., Part 2  37, L565–L567 (1998).
[CrossRef]

Ozaki, M.

H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, “Optical tuning and switching of photonic defect modes in cholesteric liquid crystals,” Appl. Phys. Lett. 90, 071107 (2007).
[CrossRef]

Perner, M.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Pettersson, L. A. A.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[CrossRef]

Prasad, P. N.

J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Rappe, A. M.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Rendina, I.

I. Rendina, F. Coppinger, B. Jalali, C. Lam, and E. Yablanovich, “Coupled Cavity Distributed-Resonance Photodetectors,” SPIE Photonics West ’983278, Integrated Optical Devices II, San Jose, Ca, Jan. 28–30 (1998).
[PubMed]

Roman, L. S.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[CrossRef]

Sakata, H.

H. Takeuchi, K. Natsume, S. Suzuki, and H. Sakata, “Microcavity distributed-beedback laser using dye-doped polymeric thin films,” Electron. Lett. 43, 30–32 (2007).
[CrossRef]

Sastre, R.

O. Garcia, R. Sastre, I. Garcia-Moreno, V. Martin, and A. Costela, “New laser hybrid materials based on POSS copolymers,” J. Phys. Chem. C 112, 14710–14713 (2008).
[CrossRef]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Dowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Scherf, U.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Schmidtke, J.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef] [PubMed]

Shakya, B.

Singer, K.

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

Singer, K. D.

Song, H.

G. Mao, J. Andrews, M. Crescimanno, K. D. Singer, E. Baer, A. Hiltner, H. Song, and B. Shakya, “Co-extruded mechanically tunable multilayer elastomer laser,” Opt. Mater. Express 1, 108–114 (2011).
[CrossRef]

J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

Spirkl, W.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Stille, W.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef] [PubMed]

Suzaki, G.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Suzuki, S.

H. Takeuchi, K. Natsume, S. Suzuki, and H. Sakata, “Microcavity distributed-beedback laser using dye-doped polymeric thin films,” Electron. Lett. 43, 30–32 (2007).
[CrossRef]

Takanishi, Y.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Takeuchi, H.

H. Takeuchi, K. Natsume, S. Suzuki, and H. Sakata, “Microcavity distributed-beedback laser using dye-doped polymeric thin films,” Electron. Lett. 43, 30–32 (2007).
[CrossRef]

Takezoe, H.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

Thomas, E. L.

J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Umegaki, S.

T. Komikado, S. Yoshida, and S. Umegaki, “Surface-emitting distributed-feedback dye laser of a polymer multilayer fabricated by spin coating,” Appl. Phys. Lett. 89, 061123 (2006).
[CrossRef]

Weder, C.

J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

Winn, J. N.

J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals; Molding the Flow of Light (Princeton, 2008) p. 147.
[PubMed]

Wittwer, V.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Wu, Y.

J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

K. D. Singer, T. Kazmierczak, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Melt-processed all-polymer distributed Bragg reflector laser,” Opt. Express 16, 10358–10363 (2008).
[CrossRef] [PubMed]

Yablanovich, E.

I. Rendina, F. Coppinger, B. Jalali, C. Lam, and E. Yablanovich, “Coupled Cavity Distributed-Resonance Photodetectors,” SPIE Photonics West ’983278, Integrated Optical Devices II, San Jose, Ca, Jan. 28–30 (1998).
[PubMed]

Yablonovich, E.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley Interscience, 2005).

Yoon, J.

J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Yoshida, H.

H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, “Optical tuning and switching of photonic defect modes in cholesteric liquid crystals,” Appl. Phys. Lett. 90, 071107 (2007).
[CrossRef]

Yoshida, S.

T. Komikado, S. Yoshida, and S. Umegaki, “Surface-emitting distributed-feedback dye laser of a polymer multilayer fabricated by spin coating,” Appl. Phys. Lett. 89, 061123 (2006).
[CrossRef]

Zabelin, V.

N. Le Thomas, V. Zabelin, and R. Houdré, “Influence of residual disorder on the anticrossing of Bloch modes probed in k space,” Phys. Rev. B 78, 125301 (2008).
[CrossRef]

Zhou, J.

J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

Adv. Mater. (1)

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Appl. Phys. Lett. (4)

H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, and M. Ozaki, “Optical tuning and switching of photonic defect modes in cholesteric liquid crystals,” Appl. Phys. Lett. 90, 071107 (2007).
[CrossRef]

J. Yoon, W. Lee, J.-M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, “Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[CrossRef]

T. Komikado, S. Yoshida, and S. Umegaki, “Surface-emitting distributed-feedback dye laser of a polymer multilayer fabricated by spin coating,” Appl. Phys. Lett. 89, 061123 (2006).
[CrossRef]

Electron. Lett. (1)

H. Takeuchi, K. Natsume, S. Suzuki, and H. Sakata, “Microcavity distributed-beedback laser using dye-doped polymeric thin films,” Electron. Lett. 43, 30–32 (2007).
[CrossRef]

J. Appl. Phys. (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Dowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[CrossRef]

J. Mater. Chem. (1)

H. Song, K. Singer, J. Lott, Y. Wu, J. Zhou, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuously melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

J. Phys. Chem. C (1)

O. Garcia, R. Sastre, I. Garcia-Moreno, V. Martin, and A. Costela, “New laser hybrid materials based on POSS copolymers,” J. Phys. Chem. C 112, 14710–14713 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Nojima, “Enhancement of optical gain in two dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys., Part 2  37, L565–L567 (1998).
[CrossRef]

Macromol. Rapid Commun. (1)

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

Nonlinear Opt., Quantum Opt. (1)

J. Zhou, K. D. Singer, J. Lott, H. Song, Y. Wu, J. Andrews, E. Baer, A. Hiltner, and C. Weder, “All-polymer distributed feedback and distributed Bragg-reflector lasers produced by roll-to-roll layer-multiplying co-extrusion,” Nonlinear Opt., Quantum Opt. 41, 59–71 (2010).

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

N. Le Thomas, V. Zabelin, and R. Houdré, “Influence of residual disorder on the anticrossing of Bloch modes probed in k space,” Phys. Rev. B 78, 125301 (2008).
[CrossRef]

Phys. Rev. Lett. (4)

V. Milner and A. Z. Genack, “Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[CrossRef] [PubMed]

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[CrossRef] [PubMed]

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Other (3)

P. Yeh, Optical Waves in Layered Media (Wiley Interscience, 2005).

I. Rendina, F. Coppinger, B. Jalali, C. Lam, and E. Yablanovich, “Coupled Cavity Distributed-Resonance Photodetectors,” SPIE Photonics West ’983278, Integrated Optical Devices II, San Jose, Ca, Jan. 28–30 (1998).
[PubMed]

J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals; Molding the Flow of Light (Princeton, 2008) p. 147.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The experimental setup used to characterize the DFB lasers (ND = Neutral Density, IR = Infra Red), (b) illustrations of a stacked and folded SAN25/THV DFB laser film, (c) an AFM image of the first etched step (etched region at left) in the terraced and folded DFB laser with cross-section below taken at the marked location on the image, and (d) photographs of laser emission from a DFB laser folded-on-SAN25 sample type (#1) showing approximately equal lasing from both faces of the microcavity laser and a closeup image of yellow beam spot with an additional ring due to diffraction.

Fig. 2
Fig. 2

(a) Comparative conversion efficiency curves of sample types (#1)–(#3) with their corresponding transmission and emission spectra pumped by the source with a 75 ns pulse duration. (b) A second set of comparative conversion efficiency curves for the same sample types but from a different section of the extruded multilayer film and a different pump laser with a 7 ns pulse duration and a larger spot size.

Fig. 3
Fig. 3

(a) Transmission curve of 128-layer folded terraced-defect laser film. (b) Laser spectra of the 128-layer folded terraced-defect laser film at three different center thicknesses.

Fig. 4
Fig. 4

(a) Transmission of simple multilayer, (THV/SAN25)64 (solid blue trace) and transmission of a folded multilayer, (SAN25/THV)32(THV/SAN25)32 (dotted red trace), both with 100 nm per layer; (b) transmission of the folded 128-layer film with a terraced central (THV) defect layer.

Fig. 5
Fig. 5

Gain enhancement in a 128-layer folded DFB laser film. (a) Gain is in the higher refractive index A layers and the fold is against an A layer (solid blue trace); gain is in the lower index B layers and the fold is against an A layer (dotted red trace). (b) Gain is in A and fold is against B (solid blue trace); gain is in B and fold is against B (dotted red trace).

Metrics