Abstract

Empirical numerical descriptions of the growth of laser-induced damage have been previously developed. In this work, Monte-Carlo techniques use these descriptions to model the evolution of a population of damage sites. The accuracy of the model is compared against laser damage growth observations. In addition, a machine learning (classification) technique independently predicts site evolution from patterns extracted directly from the data. The results show that both the Monte-Carlo simulation and machine learning classification algorithm can accurately reproduce the growth of a population of damage sites for at least 10 shots, which is extremely valuable for modeling optics lifetime in operating high-energy laser systems. Furthermore, we have also found that machine learning can be used as an important tool to explore and increase our understanding of the growth process.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49, 2606–2616 (2010).
    [CrossRef]
  2. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys.106, 103106 (2009).
  3. S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express20, 1575–1587 (2012).
    [CrossRef] [PubMed]
  4. A. Conder, J. Chang, L. Kegelmeyer, M. Spaeth, and P. Whitman, “Final optics damage inspection (FODI) for the National Ignition Facility,” Proc. SPIE7797, 77970P (2010).
    [CrossRef]
  5. I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
    [CrossRef]
  6. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express17, 11469–11479 (2009).
    [CrossRef] [PubMed]
  7. M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
    [CrossRef]
  8. M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
    [CrossRef]
  9. R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE7504, 750412 (2009).
    [CrossRef]
  10. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18, 19966–19976 (2010).
    [CrossRef] [PubMed]
  11. R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multi-parameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt.50, D12–D20 (2011).
    [CrossRef] [PubMed]
  12. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
    [CrossRef]
  13. C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17, 1958–1962 (2006).
    [CrossRef]
  14. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express20, 13030–13039 (2012).
    [CrossRef]
  15. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. (Morgan Kaufmann, 2005).
  16. J. R. Quinlan, “Learning with continuous classes,” in Proceedings AI’92, Adams and Sterling, eds. (World Scientific, 1992).
    [PubMed]

2012

2011

2010

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49, 2606–2616 (2010).
[CrossRef]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18, 19966–19976 (2010).
[CrossRef] [PubMed]

A. Conder, J. Chang, L. Kegelmeyer, M. Spaeth, and P. Whitman, “Final optics damage inspection (FODI) for the National Ignition Facility,” Proc. SPIE7797, 77970P (2010).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

2009

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys.106, 103106 (2009).

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE7504, 750412 (2009).
[CrossRef]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express17, 11469–11479 (2009).
[CrossRef] [PubMed]

2008

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

2006

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17, 1958–1962 (2006).
[CrossRef]

2004

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

2001

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Abdulla, G. M.

Adams, J. J.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17, 1958–1962 (2006).
[CrossRef]

Auerbach, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Bass, I. L.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

Bertussi, B.

Bisson, S. E.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys.106, 103106 (2009).

Bude, J. D.

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE7504, 750412 (2009).
[CrossRef]

Carr, A. V.

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

Carr, C. W.

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express20, 13030–13039 (2012).
[CrossRef]

R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multi-parameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt.50, D12–D20 (2011).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18, 19966–19976 (2010).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE7504, 750412 (2009).
[CrossRef]

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17, 1958–1962 (2006).
[CrossRef]

Chang, J.

A. Conder, J. Chang, L. Kegelmeyer, M. Spaeth, and P. Whitman, “Final optics damage inspection (FODI) for the National Ignition Facility,” Proc. SPIE7797, 77970P (2010).
[CrossRef]

Conder, A.

A. Conder, J. Chang, L. Kegelmeyer, M. Spaeth, and P. Whitman, “Final optics damage inspection (FODI) for the National Ignition Facility,” Proc. SPIE7797, 77970P (2010).
[CrossRef]

Cooke, D.

Cooke, D. J.

Cormont, P.

Cross, D. A.

Donohue, E. E.

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Draggoo, V. G.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49, 2606–2616 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys.106, 103106 (2009).

Elhadj, S.

Feit, M. D.

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17, 1958–1962 (2006).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Frank, E.

I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. (Morgan Kaufmann, 2005).

Guss, G. M.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49, 2606–2616 (2010).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

Hackel, R. P.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Hollingsworth, W. G.

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

Honig, J.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Hrubesh, L. W.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Kegelmeyer, L.

A. Conder, J. Chang, L. Kegelmeyer, M. Spaeth, and P. Whitman, “Final optics damage inspection (FODI) for the National Ignition Facility,” Proc. SPIE7797, 77970P (2010).
[CrossRef]

Kozlowski, M. R.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Legros, P.

Liao, Z.

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

Liao, Z. M.

Luthi, R. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Matthews, M. J.

Milam, D.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Molander, W. A.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Neeb, K. P.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Negres, R. A.

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express20, 13030–13039 (2012).
[CrossRef]

R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multi-parameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt.50, D12–D20 (2011).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18, 19966–19976 (2010).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE7504, 750412 (2009).
[CrossRef]

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

Norton, M. A.

R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multi-parameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt.50, D12–D20 (2011).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18, 19966–19976 (2010).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE7504, 750412 (2009).
[CrossRef]

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Nostrand, M. C.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17, 1958–1962 (2006).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Nostrand, M. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

Palmier, S.

Quinlan, J. R.

J. R. Quinlan, “Learning with continuous classes,” in Proceedings AI’92, Adams and Sterling, eds. (World Scientific, 1992).
[PubMed]

Rubenchik, A. M.

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Rullier, J. L.

Sell, W. D.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Spaeth, M.

A. Conder, J. Chang, L. Kegelmeyer, M. Spaeth, and P. Whitman, “Final optics damage inspection (FODI) for the National Ignition Facility,” Proc. SPIE7797, 77970P (2010).
[CrossRef]

Stanley, J. A.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Vickers, J. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Wegner, P.

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Wegner, P. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49, 2606–2616 (2010).
[CrossRef]

Weiland, T. L.

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Whitman, P.

A. Conder, J. Chang, L. Kegelmeyer, M. Spaeth, and P. Whitman, “Final optics damage inspection (FODI) for the National Ignition Facility,” Proc. SPIE7797, 77970P (2010).
[CrossRef]

Witten, I. H.

I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. (Morgan Kaufmann, 2005).

Wu, Z.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Yang, S. T.

Appl. Opt.

J. Appl. Phys.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys.106, 103106 (2009).

Meas. Sci. Technol.

C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17, 1958–1962 (2006).
[CrossRef]

Opt. Express

Proc. SPIE

A. Conder, J. Chang, L. Kegelmeyer, M. Spaeth, and P. Whitman, “Final optics damage inspection (FODI) for the National Ignition Facility,” Proc. SPIE7797, 77970P (2010).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

M. A. Norton, A. V. Carr, C. W. Carr, E. E. Donohue, M. D. Feit, W. G. Hollingsworth, Z. Liao, R. A. Negres, A. M. Rubenchik, and P. Wegner, “Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation,” Proc. SPIE7132, 71321H (2008).
[CrossRef]

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE7504, 750412 (2009).
[CrossRef]

M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. Wegner, “A large aperture, high energy laser system for optics and optical components testing,” Proc. SPIE5273, 325–333 (2004).
[CrossRef]

Other

I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. (Morgan Kaufmann, 2005).

J. R. Quinlan, “Learning with continuous classes,” in Proceedings AI’92, Adams and Sterling, eds. (World Scientific, 1992).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Plot of average site size and laser fluence at 351-nm as a function of shot number in the data set corresponding to 58 sites and 29 laser shots. The dashed lines represent the standard deviation of the mean size and fluence, respectively.

Fig. 2
Fig. 2

Schematic of the Monte-Carlo simulation with S Sites, N shots, and M simulations.

Fig. 3
Fig. 3

Cumulative density function (CDF) of measured sizes data (symbol) and Monte-Carlo projected sizes (solid line) as a function of number of laser shots. The inset graph shows the measured (symbol) and predicted (line) maximum size as a function of shot number.

Fig. 4
Fig. 4

Scatter plot of (a) starting size vs. final size and (b) cumulative fluence vs. total growth factor for all 58 sites, respectively.

Fig. 5
Fig. 5

Initial and final cumulative size distribution (CDF) (a) as well as the probability size density (PDF) (b) for site specific error (measured-predicted) for measured data and prediction results using Monte-Carlo (MC) simulation as well as supervised machine learning (ML), respectively.

Tables (2)

Tables Icon

Table 1 Size dependent Weibull parameters in Eq. (3) for 3ω, 5-ns FIT pulses.

Tables Icon

Table 2 The shot number dependence to predicted size according to the machine learning algorithm and Eq. (5).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D n ( ϕ ) = D n 1 exp [ α ( ϕ ) ] ,
f ( α ; λ , k ) = k λ ( α λ ) k 1 exp [ ( α λ ) k ] ,
λ ( ϕ , τ , D ) = b ( ϕ , τ , D ) [ ϕ ϕ t h ( τ , D ) ] k ( ϕ , τ , D ) = 1 + g ( ϕ , τ , D ) [ ϕ k t h ( τ , D ) ] ,
IF D n 1 > 331 and D n 1 < 430 THEN D n = 13.11 ( 1.0 ϕ 0.5 n + 0.074 D n 1 + 0.0061 ϕ ) 51.21 .
D n = A ( c 1 x 1 + c 2 x 2 + . . + c k x k ) + B D n = A ( c 1 x ^ 1 x ¯ 1 + c 2 x ^ 2 x ¯ 2 + . . + c k x ^ k x ¯ k ) + B , D n = A ( w 1 x ¯ 1 + w 2 x ¯ 2 + . . + w k x ¯ k ) + B

Metrics