Abstract

We demonstrate the design, fabrication and measurement of integrated Bragg gratings in a compact single-mode silicon-on-insulator ridge waveguide. The gratings are realized by corrugating the sidewalls of the waveguide, either on the ridge or on the slab. The coupling coefficient is varied by changing the corrugation width which allows precise control of the bandwidth and has a high fabrication tolerance. The grating devices are fabricated using a CMOS-compatible process with 193 nm deep ultraviolet lithography. Spectral measurements show bandwidths as narrow as 0.4 nm, which are promising for on-chip applications that require narrow bandwidths such as WDM channel filters. We also present the die-to-die nonuniformity for the grating devices on the wafer, and our analysis shows that the Bragg wavelength deviation is mainly caused by the wafer thickness variation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19, 1938–1942 (2001).
    [CrossRef]
  2. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34, 1357–1359 (2009).
    [CrossRef] [PubMed]
  3. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on-chip group velocity dispersion engineering,” Appl. Phys. Lett. 95, 141109 (2009).
    [CrossRef]
  4. S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curve waveguide Bragg gratings,” Opt. Lett. 35, 3477–3479 (2010).
    [CrossRef] [PubMed]
  5. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
    [CrossRef] [PubMed]
  6. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
    [CrossRef] [PubMed]
  7. R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19, 10728–10734 (2011).
    [CrossRef] [PubMed]
  8. X. Wang, W. Shi, R. Vafaei, N. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290–292 (2011).
  9. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33, 3013–3015 (2008).
    [CrossRef] [PubMed]
  10. S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
    [CrossRef]
  11. I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express,  17, 18518–18524 (2009).
    [CrossRef]
  12. S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
    [CrossRef]
  13. I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
    [CrossRef]
  14. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B,  20, 2753–2757 (2002).
    [CrossRef]
  15. G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–9 (2011).
  16. R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
    [CrossRef]
  17. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” J. Lightwave Technol. 23, 2103–2111 (2005).
    [CrossRef]
  18. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18, 14474–14479 (2010).
    [CrossRef] [PubMed]
  19. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).
  20. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
    [CrossRef]
  21. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18, 23598–23607 (2010).
    [CrossRef] [PubMed]
  22. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
    [CrossRef]
  23. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
    [CrossRef]
  24. Software: MODE Solutions, Lumerical Solutions, Inc.
  25. W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics Journal 3, 422–432 (2011).
    [CrossRef]
  26. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
    [CrossRef]
  27. http://www.epixfab.eu
  28. S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in 2011 8th IEEE Conference on Group IV Photonics (GFP), 71–73 (2011).
    [CrossRef]

2011 (7)

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[CrossRef] [PubMed]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
[CrossRef] [PubMed]

R. Loiacono, G. T. Reed, G. Z. Mashanovich, R. Gwilliam, S. J. Henley, Y. Hu, R. Feldesh, and R. Jones, “Laser erasable implanted gratings for integrated silicon photonics,” Opt. Express 19, 10728–10734 (2011).
[CrossRef] [PubMed]

X. Wang, W. Shi, R. Vafaei, N. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290–292 (2011).

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–9 (2011).

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics Journal 3, 422–432 (2011).
[CrossRef]

2010 (4)

2009 (6)

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34, 1357–1359 (2009).
[CrossRef] [PubMed]

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on-chip group velocity dispersion engineering,” Appl. Phys. Lett. 95, 141109 (2009).
[CrossRef]

I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express,  17, 18518–18524 (2009).
[CrossRef]

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

2008 (1)

2007 (1)

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
[CrossRef]

2005 (2)

2002 (1)

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B,  20, 2753–2757 (2002).
[CrossRef]

2001 (1)

1993 (1)

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[CrossRef]

Absil, P.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in 2011 8th IEEE Conference on Group IV Photonics (GFP), 71–73 (2011).
[CrossRef]

Asghari, M.

Ayache, M.

Baets, R.

Bauer, J.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

Beckx, S.

Bienstman, P.

Bogaerts, W.

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics Journal 3, 422–432 (2011).
[CrossRef]

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[CrossRef]

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in 2011 8th IEEE Conference on Group IV Photonics (GFP), 71–73 (2011).
[CrossRef]

Bruns, J.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express,  17, 18518–18524 (2009).
[CrossRef]

Bulk, M. P.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

Campenhout, J. V.

Chan, S. P.

Chen, R.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–9 (2011).

Chrostowski, L.

X. Wang, W. Shi, R. Vafaei, N. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290–292 (2011).

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
[CrossRef] [PubMed]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

Coldren, L. A.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

Cunningham, J. E.

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

Dong, P.

Dumon, P.

Edura, T.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
[CrossRef]

Fainman, Y.

Feldesh, R.

Feng, D.

Feng, N.-N.

Fernandez, L.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in 2011 8th IEEE Conference on Group IV Photonics (GFP), 71–73 (2011).
[CrossRef]

Fong, J.

Gajda, A.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express,  17, 18518–18524 (2009).
[CrossRef]

Giuntoni, I.

I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express,  17, 18518–18524 (2009).
[CrossRef]

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

Goodberlet, J. G.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B,  20, 2753–2757 (2002).
[CrossRef]

Gwilliam, R.

Hastings, J. T.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B,  20, 2753–2757 (2002).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19, 1938–1942 (2001).
[CrossRef]

Hautala, J.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in 2011 8th IEEE Conference on Group IV Photonics (GFP), 71–73 (2011).
[CrossRef]

Henley, S. J.

Homampour, S.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

Honda, S.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
[CrossRef]

Hu, Y.

Ikeda, K.

Jaeger, N.

X. Wang, W. Shi, R. Vafaei, N. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290–292 (2011).

Jaeger, N. A. F.

Jaenen, P.

Jayaraman, V.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

Jessop, P. E.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

Jiang, G.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–9 (2011).

Jiang, X.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–9 (2011).

Jones, R.

Khajavikhan, M.

Knights, A. P.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

Krause, M.

Krishnamoorthy, A. V.

Kung, C.-C.

Li, G.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

Liang, H.

Liao, S.

Lim, M. H.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B,  20, 2753–2757 (2002).
[CrossRef]

Lim, S. T.

Loiacono, R.

Luo, Y.

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

Luyssaert, B.

Marschmeyer, S.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

Mashanovich, G. Z.

Matsui, J.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
[CrossRef]

Mekis, A.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

Mizrahi, A.

Murphy, T. E.

Nezhad, M. P.

Passaro, V. M. N.

Peterman, K.

R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[CrossRef]

Petermann, K.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express,  17, 18518–18524 (2009).
[CrossRef]

Pinguet, T.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

Png, C. E.

Qian, W.

Raj, K.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[CrossRef] [PubMed]

Reed, G. T.

Richter, H.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

Rosseel, E.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in 2011 8th IEEE Conference on Group IV Photonics (GFP), 71–73 (2011).
[CrossRef]

Saperstein, R. E.

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[CrossRef]

Selvaraja, S. K.

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics Journal 3, 422–432 (2011).
[CrossRef]

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in 2011 8th IEEE Conference on Group IV Photonics (GFP), 71–73 (2011).
[CrossRef]

Shafiiha, R.

Shi, W.

X. Wang, W. Shi, R. Vafaei, N. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290–292 (2011).

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
[CrossRef] [PubMed]

Shubin, I.

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

Slutsky, B.

Smith, H. I.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B,  20, 2753–2757 (2002).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19, 1938–1942 (2001).
[CrossRef]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[CrossRef]

Steingrüber, R.

Stolarek, D.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

Tabat, M.

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in 2011 8th IEEE Conference on Group IV Photonics (GFP), 71–73 (2011).
[CrossRef]

Taillaert, D.

Tan, D. T. H.

Thacker, H.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

Thourhout, D. V.

Tillack, B.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

Tokuda, M.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
[CrossRef]

Trotter, D. C.

Tsutsui, K.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
[CrossRef]

Utaka, K.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
[CrossRef]

Vafaei, R.

X. Wang, W. Shi, R. Vafaei, N. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290–292 (2011).

Wada, Y.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
[CrossRef]

Wang, M.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–9 (2011).

Wang, X.

X. Wang, W. Shi, R. Vafaei, N. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290–292 (2011).

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36, 3999–4001 (2011).
[CrossRef] [PubMed]

Watts, M. R.

Wiaux, V.

Wu, Z.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
[CrossRef]

Yang, J.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–9 (2011).

Yao, J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

Zamek, S.

Zhang, W.

Zheng, X.

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express 19, 2401–2409 (2011).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

Zhou, Q.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–9 (2011).

Zimmermann, L.

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

Zortman, W. A.

Appl. Phys. Lett. (1)

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on-chip group velocity dispersion engineering,” Appl. Phys. Lett. 95, 141109 (2009).
[CrossRef]

Electron. Lett. (1)

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43, 630–631 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[CrossRef]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23, 6–9 (2011).

I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett. 21, 1894–1896 (2009).
[CrossRef]

X. Wang, W. Shi, R. Vafaei, N. Jaeger, and L. Chrostowski, “Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations,” IEEE Photon. Technol. Lett. 23, 290–292 (2011).

IEEE Photonics Journal (2)

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photonics Journal 3, 567–579 (2011).

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics Journal 3, 422–432 (2011).
[CrossRef]

J. Lightwave Technol. (4)

J. Vac. Sci. Technol. B (1)

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B,  20, 2753–2757 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Phys. Status Solidi C (1)

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

Other (3)

Software: MODE Solutions, Lumerical Solutions, Inc.

http://www.epixfab.eu

S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in 2011 8th IEEE Conference on Group IV Photonics (GFP), 71–73 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic diagram of the cross section of the ridge waveguide. (b) Tilted SEM image of a fabricated device with corrugations on the slab. The imaging was done after using a focused ion beam (FIB) to mill the waveguide.

Fig. 2
Fig. 2

Simulated fundamental TE mode profile. (a) Ridge waveguide. (b) Strip waveguide.

Fig. 3
Fig. 3

Top view SEM images of Bragg gratings fabricated on ridge waveguides. (a) Grating on the ridge: corrugation width on each side is 60 nm (design value). (b) Grating on the slab: corrugation width on each side is 80 nm (design value).

Fig. 4
Fig. 4

Schematic diagram of the device layout and SEM images of each of the components.

Fig. 5
Fig. 5

SEM images of (a) tilted cross section of a straight strip waveguide and (b) top view of the sidewall grating: corrugation width on each side is 40 nm (design value).

Fig. 6
Fig. 6

Measured reflection spectra of the Bragg gratings fabricated on ridge waveguides. (a) Grating on ridge with 40 nm corrugations. (b) Grating on ridge with 60 nm corrugations. (c) Grating on slab with 40 nm corrugations. (d) Grating on slab with 60 nm corrugations.

Fig. 7
Fig. 7

Measured spectral responses of the Bragg grating on ridge waveguides designed with 80 nm corrugations on the slab. The spectra are plotted without normalization. The inset shows the enlarged plot around the Bragg wavelength.

Fig. 8
Fig. 8

Measured reflection spectra of the Bragg gratings fabricated on strip waveguides. (a) 10 nm corrugations. (b) 40 nm corrugations.

Fig. 9
Fig. 9

Measured 3-dB bandwidth versus the designed corrugation width for different grating structures on the same die.

Fig. 10
Fig. 10

Measured nonuniformity of the three grating devices on different dies. (a) Bragg wavelength deviation from mean. (b) Bandwidth deviation from mean.

Fig. 11
Fig. 11

Simulated Bragg wavelength variations versus major dimensional variations. Note: for the ridge waveguide in (a), the shallow etch depth is kept constant at the target 70 nm.

Fig. 12
Fig. 12

(a) Dimensional variations extracted from the data in Fig. 10(a) using Eq. (3). (b) Thickness and width contributions to the Bragg wavelength variation.

Tables (1)

Tables Icon

Table 1 Mean, standard deviation and range for the measured Bragg wavelength and bandwidth of the three devices on dies across the centre row.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R = tanh 2 ( κ L )
Δ λ = λ 0 2 π n g κ 2 + ( π / L ) 2
[ d λ S G d T d λ S G d W d λ R G d T d λ R G d W ] [ Δ T Δ W ] = [ Δ λ S G Δ λ R G ]

Metrics