Abstract

We report on the fabrication and performances of an electrically-pumped GaSb monolithic VCSEL, i.e. ,a VCSEL with two epitaxial Bragg mirrors. Selective lateral etching of a tunnel junction is used to provide current and optical confinement. Laser devices with a 6 µm tunnel-junction effective diameter operate at 2.3 µm in CW up to 70 °C, with a threshold current as low as 1.9 mA at 30 °C. The laser emission is single mode with a SMSR near 25 dB and mode-hop-free electro-thermal tunability around 14 nm. This is the first demonstration of a single-mode electrically-pumped monolithic GaSb-based VCSEL.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2405–2412 (2002).
    [CrossRef] [PubMed]
  2. A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 microm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
    [CrossRef] [PubMed]
  3. J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett. 21(20), 1532–1534 (2009).
    [CrossRef]
  4. S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
    [CrossRef]
  5. L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004).
    [CrossRef]
  6. A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett. 17(10), 2020–2022 (2005).
    [CrossRef]
  7. N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
    [CrossRef]
  8. H. Li and K. Iga, in Vertical-Cavity Surface-Emitting Laser Devices, H.Li, and K. Iga, eds. (Springer-Verlag, 2003)
  9. K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys. 95(9), 5131–5136 (2004).
    [CrossRef]
  10. A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
    [CrossRef]
  11. A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998).
    [CrossRef]
  12. O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004).
    [CrossRef]
  13. O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity,” Electron. Lett. 42(7), 419–420 (2006).
    [CrossRef]
  14. A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron. 14, 1014–1021 (2008).
  15. K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011).
    [CrossRef]
  16. A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).
  17. A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys. 11(12), 125014 (2009).
    [CrossRef]
  18. S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
    [CrossRef]
  19. O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005).
    [CrossRef]
  20. A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett. 20(20), 1745–1747 (2008).
    [CrossRef]
  21. A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett. 45(5), 265–266 (2009).
    [CrossRef]
  22. D. Sanchez, L. Cerutti, and E. Tournié, “New confinement method for monolithic GaSb-VCSEL emitting in the mid-IR,” presented at the SPIE Photonics Europe conference, Brussels, Belgium, 15–19 Apr. 2012.
  23. D. Feezell, D. Buell, and L. Coldren, “InP-based 1.3-1.6-µm VCSELS with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett. 17(10), 2017–2019 (2005).
    [CrossRef]
  24. D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron. 42(5), 494–499 (2006).
    [CrossRef]
  25. J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001).
    [CrossRef]
  26. Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett. 45(2), 105–106 (2009).
    [CrossRef]
  27. J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
    [CrossRef]
  28. A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009).
    [CrossRef]
  29. S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron. 17, 1576–1583 (2011).

2012 (1)

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[CrossRef]

2011 (2)

K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011).
[CrossRef]

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron. 17, 1576–1583 (2011).

2009 (7)

A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett. 45(5), 265–266 (2009).
[CrossRef]

Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett. 45(2), 105–106 (2009).
[CrossRef]

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys. 11(12), 125014 (2009).
[CrossRef]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[CrossRef]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett. 21(20), 1532–1534 (2009).
[CrossRef]

2008 (2)

A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron. 14, 1014–1021 (2008).

A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett. 20(20), 1745–1747 (2008).
[CrossRef]

2007 (1)

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
[CrossRef]

2006 (4)

O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity,” Electron. Lett. 42(7), 419–420 (2006).
[CrossRef]

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 microm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
[CrossRef] [PubMed]

D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron. 42(5), 494–499 (2006).
[CrossRef]

2005 (3)

D. Feezell, D. Buell, and L. Coldren, “InP-based 1.3-1.6-µm VCSELS with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett. 17(10), 2017–2019 (2005).
[CrossRef]

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett. 17(10), 2020–2022 (2005).
[CrossRef]

O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005).
[CrossRef]

2004 (3)

O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004).
[CrossRef]

K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys. 95(9), 5131–5136 (2004).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004).
[CrossRef]

2002 (1)

A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2405–2412 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001).
[CrossRef]

1998 (2)

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998).
[CrossRef]

Adams, A. R.

A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009).
[CrossRef]

Aers, G. C.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett. 21(20), 1532–1534 (2009).
[CrossRef]

Akulova, Y. A.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Alibert, C.

A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998).
[CrossRef]

Amann, M.-C.

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron. 17, 1576–1583 (2011).

K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011).
[CrossRef]

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[CrossRef]

A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009).
[CrossRef]

O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity,” Electron. Lett. 42(7), 419–420 (2006).
[CrossRef]

O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005).
[CrossRef]

O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004).
[CrossRef]

Arafin, S.

K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011).
[CrossRef]

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron. 17, 1576–1583 (2011).

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys. 11(12), 125014 (2009).
[CrossRef]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[CrossRef]

Babic, D. I.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Bachmann, A.

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron. 17, 1576–1583 (2011).

A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009).
[CrossRef]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[CrossRef]

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys. 11(12), 125014 (2009).
[CrossRef]

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).

Baranov, A. N.

A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2405–2412 (2002).
[CrossRef] [PubMed]

A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998).
[CrossRef]

Barat, D.

Barrios, P. J.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett. 21(20), 1532–1534 (2009).
[CrossRef]

Beyertt, S. S.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

Boissier, G.

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
[CrossRef]

A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998).
[CrossRef]

Bowers, J. E.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Brauch, U.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

Briggs, R. M.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[CrossRef]

Buell, D.

D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron. 42(5), 494–499 (2006).
[CrossRef]

D. Feezell, D. Buell, and L. Coldren, “InP-based 1.3-1.6-µm VCSELS with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett. 17(10), 2017–2019 (2005).
[CrossRef]

Buschmann, V.

J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001).
[CrossRef]

Cao, C.

Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett. 45(2), 105–106 (2009).
[CrossRef]

Cao, M.

Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett. 45(2), 105–106 (2009).
[CrossRef]

Cerda, E.

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004).
[CrossRef]

Cerutti, L.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett. 45(5), 265–266 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett. 20(20), 1745–1747 (2008).
[CrossRef]

A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron. 14, 1014–1021 (2008).

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
[CrossRef]

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett. 17(10), 2020–2022 (2005).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004).
[CrossRef]

Cheng, K. Y.

K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys. 95(9), 5131–5136 (2004).
[CrossRef]

Coldren, L.

D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron. 42(5), 494–499 (2006).
[CrossRef]

D. Feezell, D. Buell, and L. Coldren, “InP-based 1.3-1.6-µm VCSELS with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett. 17(10), 2017–2019 (2005).
[CrossRef]

Coldren, L. A.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Dachs, S.

O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005).
[CrossRef]

Dier, O.

O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity,” Electron. Lett. 42(7), 419–420 (2006).
[CrossRef]

O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005).
[CrossRef]

O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004).
[CrossRef]

Ducanchez, A.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett. 45(5), 265–266 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett. 20(20), 1745–1747 (2008).
[CrossRef]

A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron. 14, 1014–1021 (2008).

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
[CrossRef]

Feezell, D.

D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron. 42(5), 494–499 (2006).
[CrossRef]

D. Feezell, D. Buell, and L. Coldren, “InP-based 1.3-1.6-µm VCSELS with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett. 17(10), 2017–2019 (2005).
[CrossRef]

Forouhar, S.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[CrossRef]

Franz, K. J.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[CrossRef]

Frez, C.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[CrossRef]

Fuess, H.

J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001).
[CrossRef]

Gaillard, S.

A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2405–2412 (2002).
[CrossRef] [PubMed]

A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998).
[CrossRef]

Garcia, M.

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004).
[CrossRef]

Garnac, A.

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett. 17(10), 2020–2022 (2005).
[CrossRef]

Garnache, A.

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
[CrossRef]

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 microm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
[CrossRef] [PubMed]

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004).
[CrossRef]

Gassenq, A.

A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron. 14, 1014–1021 (2008).

Genty, F.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett. 45(5), 265–266 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron. 14, 1014–1021 (2008).

A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett. 20(20), 1745–1747 (2008).
[CrossRef]

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
[CrossRef]

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett. 17(10), 2020–2022 (2005).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004).
[CrossRef]

Giesen, A.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

Gong, Q.

Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett. 45(2), 105–106 (2009).
[CrossRef]

Grau, M.

O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005).
[CrossRef]

O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004).
[CrossRef]

Grech, P.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett. 45(5), 265–266 (2009).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett. 20(20), 1745–1747 (2008).
[CrossRef]

A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron. 14, 1014–1021 (2008).

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
[CrossRef]

A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998).
[CrossRef]

Gupta, J. A.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett. 21(20), 1532–1534 (2009).
[CrossRef]

Hartnagel, H. L.

J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001).
[CrossRef]

Ikyo, A. B.

A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009).
[CrossRef]

Kashani-Shirazi, K.

A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009).
[CrossRef]

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[CrossRef]

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys. 11(12), 125014 (2009).
[CrossRef]

Kim, J. G.

K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys. 95(9), 5131–5136 (2004).
[CrossRef]

Koeth, J.

Kohler, K.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

Ksendzov, A.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[CrossRef]

Kubler, T.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

Lao, Y.

Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett. 45(2), 105–106 (2009).
[CrossRef]

Lapointe, J.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett. 21(20), 1532–1534 (2009).
[CrossRef]

Lauer, C.

O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity,” Electron. Lett. 42(7), 419–420 (2006).
[CrossRef]

O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005).
[CrossRef]

O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004).
[CrossRef]

Lin, C.

O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005).
[CrossRef]

O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004).
[CrossRef]

Lin, H. C.

K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys. 95(9), 5131–5136 (2004).
[CrossRef]

Lofgreen, D.

D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron. 42(5), 494–499 (2006).
[CrossRef]

Manz, C.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

Marko, I. P.

A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009).
[CrossRef]

Martinelli, R. U.

K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys. 95(9), 5131–5136 (2004).
[CrossRef]

Mehta, M.

D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron. 42(5), 494–499 (2006).
[CrossRef]

Meneou, K.

K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys. 95(9), 5131–5136 (2004).
[CrossRef]

Mihindou, S.

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
[CrossRef]

Ouvrard, A.

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 microm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
[CrossRef] [PubMed]

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett. 17(10), 2020–2022 (2005).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004).
[CrossRef]

Perona, A.

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
[CrossRef]

Pérona, A.

A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2405–2412 (2002).
[CrossRef] [PubMed]

Piprek, J.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Rattunde, A.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

Romanini, D.

Rouillard, Y.

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 microm above room temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45(20), 4957–4965 (2006).
[CrossRef] [PubMed]

A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2405–2412 (2002).
[CrossRef] [PubMed]

A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998).
[CrossRef]

Saglam, M.

J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001).
[CrossRef]

Salhi, A.

Schulz, N.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

Seufert, J.

Sigmund, J.

J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001).
[CrossRef]

Sterkel, M.

O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004).
[CrossRef]

Storey, C.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett. 21(20), 1532–1534 (2009).
[CrossRef]

Sweeney, S. J.

A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009).
[CrossRef]

Törpe, M.

K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011).
[CrossRef]

Tournié, E.

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett. 45(5), 265–266 (2009).
[CrossRef]

Vicet, A.

Vizbaras, K.

K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011).
[CrossRef]

Vogt, A.

J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001).
[CrossRef]

Wagner, J.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

Waldron, P.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett. 21(20), 1532–1534 (2009).
[CrossRef]

Werner, R.

Wieder, T.

J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001).
[CrossRef]

Wild, C.

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

Wu, H.

Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett. 45(2), 105–106 (2009).
[CrossRef]

Yarekha, D. A.

A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2405–2412 (2002).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 µm wavelength,” Appl. Phys. Lett. 100(3), 031107 (2012).
[CrossRef]

O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Tunnel junctions for ohmic intra-device contacts on GaSb-substrates,” Appl. Phys. Lett. 85(12), 2388–2389 (2004).
[CrossRef]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically pumped continuous-wave vertical-cavity surface-emitting lasers at ~2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[CrossRef]

O. Dier, S. Dachs, M. Grau, C. Lin, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb,” Appl. Phys. Lett. 86(15), 151120 (2005).
[CrossRef]

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 µm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Electron. Lett. (5)

A. Ducanchez, L. Cerutti, P. Grech, F. Genty, and E. Tournié, “Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 µm,” Electron. Lett. 45(5), 265–266 (2009).
[CrossRef]

Y. Lao, C. Cao, H. Wu, M. Cao, and Q. Gong, “InAsP/InGaAsP quantum-well 1.3 µm vertical-cavity surface-emitting lasers,” Electron. Lett. 45(2), 105–106 (2009).
[CrossRef]

O. Dier, C. Lauer, and M.-C. Amann, “n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity,” Electron. Lett. 42(7), 419–420 (2006).
[CrossRef]

A. N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 µm at room temperature,” Electron. Lett. 34(3), 281–282 (1998).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, M. Garcia, E. Cerda, and F. Genty, “2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with TEM00 output beam,” Electron. Lett. 40, 869–871 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Feezell, D. Buell, D. Lofgreen, M. Mehta, and L. Coldren, “Optical design of InAlGaAs low-loss tunnel-junction apertures for long-wavelength vertical-cavity lasers,” IEEE J. Quantum Electron. 42(5), 494–499 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

D. Feezell, D. Buell, and L. Coldren, “InP-based 1.3-1.6-µm VCSELS with selectively etched tunnel-junction apertures on a wavelength flexible platform,” IEEE Photon. Technol. Lett. 17(10), 2017–2019 (2005).
[CrossRef]

A. Ducanchez, L. Cerutti, P. Grech, and F. Genty, “Room-Temperature Continuous-Wave Operation of 2.3 µm Sb-Based Electrically Pumped Monolithic Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett. 20(20), 1745–1747 (2008).
[CrossRef]

A. Ouvrard, A. Garnac, L. Cerutti, F. Genty, and D. Romanini, “Single-frequency tunable Sb-based VCSELs emitting at 2.3 µm,” IEEE Photon. Technol. Lett. 17(10), 2020–2022 (2005).
[CrossRef]

N. Schulz, A. Rattunde, C. Manz, K. Kohler, C. Wild, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, “Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 µm,” IEEE Photon. Technol. Lett. 18(9), 1070–1072 (2006).
[CrossRef]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey, and P. Waldron, “Modal gain of 2.4 µm InGaAsSb-AlGaAsSb complex-coupled distributed-feedback lasers,” IEEE Photon. Technol. Lett. 21(20), 1532–1534 (2009).
[CrossRef]

IEEE Select. Top. Quantum Electron. (1)

S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with buried-tunnel junctions,” IEEE Select. Top. Quantum Electron. 17, 1576–1583 (2011).

IEEE Select. Top.in Quant. Electron. (2)

A. Bachmann, K. Kashani-Shirazi, S. Arafin, and M.-C. Amann, “GaSb-Based VCSEL with buried tunnel junction for emission aroud 2.3 µm,” IEEE Select. Top.in Quant. Electron. 15, 933–940 (2009).

A. Ducanchez, L. Cerutti, A. Gassenq, P. Grech, and F. Genty, “Fabrication and Characterization of GaSb-Based Monolithic Resonant-Cavity Light-Emitting Diodes Emitting Around 2.3 µm and Including a Tunnel Junction,” IEEE Select. Top.in Quant. Electron. 14, 1014–1021 (2008).

IET Optoelectron. (1)

A. B. Ikyo, I. P. Marko, A. R. Adams, S. J. Sweeney, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Gain peak–cavity mode alignment optimisation in buried tunnel junction mid-infrared GaSb vertical cavity surface emitting lasers using hydrostatic pressure,” IET Optoelectron. 3(6), 305–309 (2009).
[CrossRef]

J. Appl. Phys. (1)

K. Meneou, H. C. Lin, K. Y. Cheng, J. G. Kim, and R. U. Martinelli, “Wet thermal oxidation of AlAsSb alloys lattice matched to GaSb,” J. Appl. Phys. 95(9), 5131–5136 (2004).
[CrossRef]

J. Cryst. Growth (1)

J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Wieder, and H. Fuess, “Microstructure analysis of ohmic contacts on MBE grown n-GaSb and investigation of sub-micron contacts,” J. Cryst. Growth 228, 625–629 (2001).
[CrossRef]

New J. Phys. (1)

A. Bachmann, S. Arafin, and K. Kashani-Shirazi, “Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm,” New J. Phys. 11(12), 125014 (2009).
[CrossRef]

Semicond. Sci. Technol. (2)

K. Vizbaras, M. Törpe, S. Arafin, and M.-C. Amann, “Ultra-low resistive GaSb/InAs tunnel junctions,” Semicond. Sci. Technol. 26(7), 075021 (2011).
[CrossRef]

A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, “AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 µm,” Semicond. Sci. Technol. 22(10), 1140–1144 (2007).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

A. Vicet, D. A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, and A. N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2405–2412 (2002).
[CrossRef] [PubMed]

Other (2)

H. Li and K. Iga, in Vertical-Cavity Surface-Emitting Laser Devices, H.Li, and K. Iga, eds. (Springer-Verlag, 2003)

D. Sanchez, L. Cerutti, and E. Tournié, “New confinement method for monolithic GaSb-VCSEL emitting in the mid-IR,” presented at the SPIE Photonics Europe conference, Brussels, Belgium, 15–19 Apr. 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the processed structure, with Φ1 the external diameter of the etched mesa,Φ2 the internal diameter of the output VCSEL and Φ3the effective diameter of the TJ.

Fig. 2
Fig. 2

Cross-section SEM picture of selectively etched InAs/GaSb tunnel-junction in a monolithic GaSb-VCSEL.

Fig. 3
Fig. 3

L-I and V-I characteristics (same color code) taken at various temperatures in CW for a monolithic GaSb-VCSEL with a 6 µm TJ effective diameter.

Fig. 4
Fig. 4

Threshold current versus temperature of a monolithic GaSb-VCSEL with a 6 µm TJ effective diameter.

Fig. 5
Fig. 5

Laser emission spectra taken at 20 °C under different CW drive currents for a monolithic GaSb-VCSEL with a 6 µm TJ effective diameter.

Fig. 6
Fig. 6

Wavelength tunability of the VCSEL with 6 µm TJ effective diameter: (a) evolution of the emitted wavelength with drive current at different temperatures (20, 30, 40, 50 and 60 °C); (b) evolution of the emission wavelength with heat-sink temperature at different drive currents (3, 4 and 5 mA).

Metrics