Abstract

We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion influences the energy transfer to the signal, depending on its detuning with respect to the pump, and breaks the symmetry of the gain expected from phase-matching considerations in unsaturated amplifiers. The asymmetry feature of the saturated spectrum is shown to particularly depend on the dispersion characteristics of the amplifier and shows local maxima for specific dispersion values.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Inoue, “Optical level equalisation based on gain saturation in fibre optical parametric amplifier,” Electron. Lett. 36(12), 1016–1018 (2000).
    [CrossRef]
  2. C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
    [CrossRef]
  3. A. Vedadi, A. M. Ariaei, M. M. Jadidi, and J. A. Salehi, “Theoretical study of high repetition rate short pulse generation with fiber optical parametric amplification,” J. Lightwave Technol. 30(9), 1263–1268 (2012).
    [CrossRef]
  4. K. Inoue and T. Mukai, “Experimental study of noise characteristics of a gain-saturated fiber optical parametric amplifier,” J. Lightwave Technol. 20(6), 969–974 (2002).
    [CrossRef]
  5. M. E. Marhic, Fiber optical parametric amplifiers, oscillators and related devices (Cambridge University Press, 2008), Chap. 5.
  6. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15(13), 8104–8114 (2007).
    [CrossRef] [PubMed]
  7. P. Kylemark, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Semi-analytical saturation theory of fiber optical parametric amplifiers,” J. Lightwave Technol. 24(9), 3471–3479 (2006).
    [CrossRef]
  8. K. Inoue and T. Mukai, “Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier,” Opt. Lett. 26(1), 10–12 (2001).
    [CrossRef] [PubMed]
  9. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
    [CrossRef] [PubMed]
  10. A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30(1), 61–63 (2005).
    [CrossRef] [PubMed]
  11. M. Droques, B. Barviau, A. Kudlinski, M. Taki, A. Boucon, T. Sylvestre, and A. Mussot, “Symmetry-breaking dynamics of the modulational instability spectrum,” Opt. Lett. 36(8), 1359–1361 (2011).
    [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics 3rd ed. (Academic Press, 2006), Chap. 2 and 12.
  13. K. Inoue and T. Mukai, “Spectral hole in the amplified spontaneous emission spectrum of a fiber optical parametric amplifier,” Opt. Lett. 26(12), 869–871 (2001).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

2009 (1)

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

2002 (1)

2001 (2)

2000 (1)

K. Inoue, “Optical level equalisation based on gain saturation in fibre optical parametric amplifier,” Electron. Lett. 36(12), 1016–1018 (2000).
[CrossRef]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Abeeluck, A. K.

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Andrekson, P. A.

Ariaei, A. M.

Barviau, B.

Boucon, A.

Coen, S.

Droques, M.

Grüner-Nielsen, L.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Harvey, J. D.

Headley, C.

Hsieh, A. S. Y.

Inoue, K.

Jadidi, M. M.

Karlsson, M.

Kudlinski, A.

Kylemark, P.

Leonhardt, R.

Lorenzen, M.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Mukai, T.

Murdoch, S. G.

Mussot, A.

Nielsen, C. V.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Noordegraaf, D.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Peucheret, C.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Rottwitt, K.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Salehi, J. A.

Seoane, J.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

Sunnerud, H.

Sylvestre, T.

Taki, M.

Vanholsbeeck, F.

Vedadi, A.

Wong, G. K. L.

Electron. Lett. (1)

K. Inoue, “Optical level equalisation based on gain saturation in fibre optical parametric amplifier,” Electron. Lett. 36(12), 1016–1018 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 21(13), 872–874 (2009).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics 3rd ed. (Academic Press, 2006), Chap. 2 and 12.

M. E. Marhic, Fiber optical parametric amplifiers, oscillators and related devices (Cambridge University Press, 2008), Chap. 5.

Supplementary Material (1)

» Media 1: MOV (653 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for FOPA gain characterization.

Fig. 2
Fig. 2

Experimental signal gain spectra for different signal input powers.

Fig. 3
Fig. 3

(a) Nomenclature of the FWM products (a). (b) Wavelength positions of the maximum unsaturated gain at the Stokes and anti-Stokes sides of the pump, corresponding 1HFPs, 2HFPs, as well as DWs for different values of the detuning between the pump and the zero-dispersion wavelength ∆λP0.

Fig. 4
Fig. 4

Experimentally measured output power of the pump, signal, idler and ± 1HFPs for signal wavelengths equal to: (a) λs = 1546 nm (b) λs = 1570 nm.

Fig. 5
Fig. 5

Signal gain spectra simulated for different signal input powers with and without taking SRS into account.

Fig. 6
Fig. 6

Top: Simulated signal gain (solid black curve) and idler conversion efficiency (dashed red curve) spectra for three different amplifier bandwidths corresponding to overlap of the DW with the phase-matched signal wavelength on the short wavelength side (a), 1HFP (b) and 2HFP (c). Bottom: Corresponding output spectra when the signal is tuned to the phase-matched wavelength on the short wavelength side.

Fig. 7
Fig. 7

Asymmetry factor (idler-to-signal output power ratio) as a function of β2(ωP) (corresponding to different amplifier bandwidths) for different signal input powers (Media 1).

Fig. 8
Fig. 8

Asymmetry factor (idler-to-signal output power ratio) as a function of dispersion slope for different signal input powers and for amplifiers having the same unsaturated gain spectrum.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

β 3 Δ ω DW 3 +3 β 2 Δ ω DW 2 3γ P P =0,
A z + α 2 A+ i 2 β 2 2 A t 2 1 6 β 3 3 A t 3 =iγ | A | 2 A.
A(0,t)= P P (0) exp(i ω P t)+ P S (0) exp(i ω S t),
Δβ+2γ P P = β 2 ( ω P )Δ ω PS 2 +2γ P P =0,
2Δ ω PS =2 2γ P P | β 2 ( ω P ) | .
Asymmetryfactor= P I (L) P S (L) .
β 3 = 3γ P P 3 β 2 Δ ω DW 2 Δ ω DW 3 ,
Δ ω DW =(n+1)Δ ω PS =(n+1) 2γ P P | β 2 ( ω P ) | .

Metrics