Abstract

In this paper, we propose a novel 3D polarimetric computational integral imaging system by using polarization diversity of objects under natural illumination conditions. In the system, the measured Stokes polarization parameters are utilized to generate degree of polarization images of a 3D scene. Based on degree of polarization images and original 2D images, we utilize a modified computational reconstruction method to perform 3D polarimetric image reconstruction. The system may be used to detect or classify objects with distinct polarization signatures in 3D space. Experimental results also show the proposed system may mitigate the effect of occlusion in 3D reconstruction.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Chen and C. Rao, “Polarization of light on reflection by some natural surfaces,” J. Phys. D 1(9), 1191–1200 (1968).
    [CrossRef]
  2. T. H. Waterman, “Polarization sensitivity,” Handbook of sensory physiology 7, 281–469 (1981).
  3. L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
    [CrossRef]
  4. L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vision Comput. 15, 81–93 (1997).
  5. S. Daly, “Polarimetric imaging,” Rochester Institute of Technology, 2002, (technical report).
  6. M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, Polarimetric Detection, Characterization, and Remote Sensing (Springer, 2011).
  7. G. Lippmann, “La photographie integrale,” CR Acad. Sci. 146, 446–451 (1908).
  8. H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. A 21(3), 171–176 (1931).
    [CrossRef]
  9. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58(1), 71–74 (1968).
    [CrossRef]
  10. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
    [CrossRef]
  11. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
    [CrossRef] [PubMed]
  12. S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
    [CrossRef] [PubMed]
  13. M. Martinez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
    [CrossRef] [PubMed]
  14. F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
    [CrossRef]
  15. A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–608 (2006).
    [CrossRef]
  16. M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34(7), 1105–1107 (2009).
    [CrossRef] [PubMed]
  17. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
    [CrossRef]
  18. B. Javidi, F. Okano, and J. Y. Son, Three-dimensional Imaging, Visualization, and Display (Springer, 2009).
  19. M. Pollefeys, R. Koch, M. Vergauwen, A. A. Deknuydt, and L. J. Van Gool, “Three-dimensional scene reconstruction from images,” Proc. SPIE 3958, 215–226 (2000).
    [CrossRef]
  20. L. Guan, J. S. Franco, E. Boyer, and M. Pollefeys, “Probabilistic 3D occupancy flow with latent silhouette cues,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1379–1386 (2010).
  21. O. Matoba and B. Javidi, “Three-dimensional polarimetric integral imaging,” Opt. Lett. 29(20), 2375–2377 (2004).
    [CrossRef] [PubMed]
  22. B. Javidi, S. H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45(13), 2986–2994 (2006).
    [CrossRef] [PubMed]
  23. F. A. Sadjadi, “Passive three-dimensional imaging using polarimetric diversity,” Opt. Lett. 32(3), 229–231 (2007).
    [CrossRef] [PubMed]
  24. P. Miché, A. Bensrhair, and D. Lebrun, “Passive 3-D shape recovery of unknown objects using cooperative polarimetric and radiometric stereo vision processes,” Opt. Eng. 44(2), 027005 (2005).
    [CrossRef]
  25. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. A 57(9), 1105–1112 (1967).
    [CrossRef]
  26. R. B. Reid, M. E. Oxley, M. T. Eismann, and M. E. Goda, “Quantifying surface normal estimation,” Proc. SPIE 6240, 624001, 624001-11 (2006).
    [CrossRef]
  27. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).
  28. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).
  29. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
    [CrossRef]
  30. J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27(13), 1144–1146 (2002).
    [CrossRef] [PubMed]

2009 (2)

M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34(7), 1105–1107 (2009).
[CrossRef] [PubMed]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[CrossRef]

2007 (2)

F. A. Sadjadi, “Passive three-dimensional imaging using polarimetric diversity,” Opt. Lett. 32(3), 229–231 (2007).
[CrossRef] [PubMed]

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[CrossRef]

2006 (4)

R. B. Reid, M. E. Oxley, M. T. Eismann, and M. E. Goda, “Quantifying surface normal estimation,” Proc. SPIE 6240, 624001, 624001-11 (2006).
[CrossRef]

B. Javidi, S. H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45(13), 2986–2994 (2006).
[CrossRef] [PubMed]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[CrossRef]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–608 (2006).
[CrossRef]

2005 (2)

M. Martinez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

P. Miché, A. Bensrhair, and D. Lebrun, “Passive 3-D shape recovery of unknown objects using cooperative polarimetric and radiometric stereo vision processes,” Opt. Eng. 44(2), 027005 (2005).
[CrossRef]

2004 (2)

2002 (1)

2001 (1)

2000 (1)

M. Pollefeys, R. Koch, M. Vergauwen, A. A. Deknuydt, and L. J. Van Gool, “Three-dimensional scene reconstruction from images,” Proc. SPIE 3958, 215–226 (2000).
[CrossRef]

1997 (1)

L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vision Comput. 15, 81–93 (1997).

1990 (1)

L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
[CrossRef]

1980 (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
[CrossRef]

1968 (2)

C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58(1), 71–74 (1968).
[CrossRef]

H. S. Chen and C. Rao, “Polarization of light on reflection by some natural surfaces,” J. Phys. D 1(9), 1191–1200 (1968).
[CrossRef]

1967 (1)

K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. A 57(9), 1105–1112 (1967).
[CrossRef]

1931 (1)

H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. A 21(3), 171–176 (1931).
[CrossRef]

1908 (1)

G. Lippmann, “La photographie integrale,” CR Acad. Sci. 146, 446–451 (1908).

Arai, J.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[CrossRef]

Arimoto, H.

Barrett, D.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[CrossRef]

Bensrhair, A.

P. Miché, A. Bensrhair, and D. Lebrun, “Passive 3-D shape recovery of unknown objects using cooperative polarimetric and radiometric stereo vision processes,” Opt. Eng. 44(2), 027005 (2005).
[CrossRef]

Burckhardt, C. B.

Chen, H. S.

H. S. Chen and C. Rao, “Polarization of light on reflection by some natural surfaces,” J. Phys. D 1(9), 1191–1200 (1968).
[CrossRef]

Collett, E.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[CrossRef]

DaneshPanah, M.

Deknuydt, A. A.

M. Pollefeys, R. Koch, M. Vergauwen, A. A. Deknuydt, and L. J. Van Gool, “Three-dimensional scene reconstruction from images,” Proc. SPIE 3958, 215–226 (2000).
[CrossRef]

Eismann, M. T.

R. B. Reid, M. E. Oxley, M. T. Eismann, and M. E. Goda, “Quantifying surface normal estimation,” Proc. SPIE 6240, 624001, 624001-11 (2006).
[CrossRef]

Fraher, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[CrossRef]

Goda, M. E.

R. B. Reid, M. E. Oxley, M. T. Eismann, and M. E. Goda, “Quantifying surface normal estimation,” Proc. SPIE 6240, 624001, 624001-11 (2006).
[CrossRef]

Hong, S. H.

Ives, H. E.

H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. A 21(3), 171–176 (1931).
[CrossRef]

Jang, J. S.

Javidi, B.

Koch, R.

M. Pollefeys, R. Koch, M. Vergauwen, A. A. Deknuydt, and L. J. Van Gool, “Three-dimensional scene reconstruction from images,” Proc. SPIE 3958, 215–226 (2000).
[CrossRef]

Lebrun, D.

P. Miché, A. Bensrhair, and D. Lebrun, “Passive 3-D shape recovery of unknown objects using cooperative polarimetric and radiometric stereo vision processes,” Opt. Eng. 44(2), 027005 (2005).
[CrossRef]

Lippmann, G.

G. Lippmann, “La photographie integrale,” CR Acad. Sci. 146, 446–451 (1908).

Martinez-Corral, M.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[CrossRef]

M. Martinez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[CrossRef]

Martínez-Cuenca, R.

Matoba, O.

Miché, P.

P. Miché, A. Bensrhair, and D. Lebrun, “Passive 3-D shape recovery of unknown objects using cooperative polarimetric and radiometric stereo vision processes,” Opt. Eng. 44(2), 027005 (2005).
[CrossRef]

Mitani, K.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[CrossRef]

Okano, F.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[CrossRef]

Okoshi, T.

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
[CrossRef]

Okui, M.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[CrossRef]

Oxley, M. E.

R. B. Reid, M. E. Oxley, M. T. Eismann, and M. E. Goda, “Quantifying surface normal estimation,” Proc. SPIE 6240, 624001, 624001-11 (2006).
[CrossRef]

Pollefeys, M.

M. Pollefeys, R. Koch, M. Vergauwen, A. A. Deknuydt, and L. J. Van Gool, “Three-dimensional scene reconstruction from images,” Proc. SPIE 3958, 215–226 (2000).
[CrossRef]

Rao, C.

H. S. Chen and C. Rao, “Polarization of light on reflection by some natural surfaces,” J. Phys. D 1(9), 1191–1200 (1968).
[CrossRef]

Reid, R. B.

R. B. Reid, M. E. Oxley, M. T. Eismann, and M. E. Goda, “Quantifying surface normal estimation,” Proc. SPIE 6240, 624001, 624001-11 (2006).
[CrossRef]

Saavedra, G.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[CrossRef]

M. Martinez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

Sadjadi, F. A.

Schaefer, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[CrossRef]

Smyth, R.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[CrossRef]

Sparrow, E. M.

K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. A 57(9), 1105–1112 (1967).
[CrossRef]

Stern, A.

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–608 (2006).
[CrossRef]

Torrance, K. E.

K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. A 57(9), 1105–1112 (1967).
[CrossRef]

Van Gool, L. J.

M. Pollefeys, R. Koch, M. Vergauwen, A. A. Deknuydt, and L. J. Van Gool, “Three-dimensional scene reconstruction from images,” Proc. SPIE 3958, 215–226 (2000).
[CrossRef]

Vergauwen, M.

M. Pollefeys, R. Koch, M. Vergauwen, A. A. Deknuydt, and L. J. Van Gool, “Three-dimensional scene reconstruction from images,” Proc. SPIE 3958, 215–226 (2000).
[CrossRef]

Wolff, L. B.

L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vision Comput. 15, 81–93 (1997).

L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
[CrossRef]

Am. J. Phys. (1)

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[CrossRef]

Appl. Opt. (1)

CR Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” CR Acad. Sci. 146, 446–451 (1908).

IEEE Trans. Pattern Anal. Mach. Intell. (1)

L. B. Wolff, “Polarization-based material classification from specular reflection,” IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990).
[CrossRef]

Image Vision Comput. (1)

L. B. Wolff, “Polarization vision: a new sensory approach to image understanding,” Image Vision Comput. 15, 81–93 (1997).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. A 21(3), 171–176 (1931).
[CrossRef]

K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. A 57(9), 1105–1112 (1967).
[CrossRef]

J. Phys. D (1)

H. S. Chen and C. Rao, “Polarization of light on reflection by some natural surfaces,” J. Phys. D 1(9), 1191–1200 (1968).
[CrossRef]

Opt. Eng. (1)

P. Miché, A. Bensrhair, and D. Lebrun, “Passive 3-D shape recovery of unknown objects using cooperative polarimetric and radiometric stereo vision processes,” Opt. Eng. 44(2), 027005 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Proc. IEEE (4)

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[CrossRef]

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
[CrossRef]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94(3), 490–501 (2006).
[CrossRef]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–608 (2006).
[CrossRef]

Proc. SPIE (2)

M. Pollefeys, R. Koch, M. Vergauwen, A. A. Deknuydt, and L. J. Van Gool, “Three-dimensional scene reconstruction from images,” Proc. SPIE 3958, 215–226 (2000).
[CrossRef]

R. B. Reid, M. E. Oxley, M. T. Eismann, and M. E. Goda, “Quantifying surface normal estimation,” Proc. SPIE 6240, 624001, 624001-11 (2006).
[CrossRef]

Other (7)

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).

L. Guan, J. S. Franco, E. Boyer, and M. Pollefeys, “Probabilistic 3D occupancy flow with latent silhouette cues,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1379–1386 (2010).

B. Javidi, F. Okano, and J. Y. Son, Three-dimensional Imaging, Visualization, and Display (Springer, 2009).

T. H. Waterman, “Polarization sensitivity,” Handbook of sensory physiology 7, 281–469 (1981).

S. Daly, “Polarimetric imaging,” Rochester Institute of Technology, 2002, (technical report).

M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, Polarimetric Detection, Characterization, and Remote Sensing (Springer, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Measurement configuration of Stokes parameters. (b) Illustration of alignment experiment for LP and QWP.

Fig. 2
Fig. 2

(a) Pickup process of integral imaging. (b) Pickup process of polarimetric integral imaging.

Fig. 3
Fig. 3

Experimental setup of a polarimetric integral imaging system.

Fig. 4
Fig. 4

Four examples of elemental images in our experiment

Fig. 5
Fig. 5

DoLP, DoCP, DoP images of elemental images shown in Fig. 4. (a) DoLP images. (b) DoCP images. (c) DoP images.

Fig. 6
Fig. 6

Reconstruction results at 450mm, 530mm, and 720mm. (a) Reconstruction results of conventional integral imaging. (b) Reconstruction results of the proposed polarimetric integral imaging with p = 0.2. (c) Reconstruction results of the proposed polarimetric integral imaging with p = 0.4.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S=( S 0 S 1 S 2 S 3 ) = ( E x 2 + E y 2 E x 2 E y 2 2 E x E y cosδ 2 E x E y sinδ )
DoLP= S 1 2 + S 2 2 S 0 ;DoCP= S 3 2 S 0 ;DoP= DoLP 2 + DoCP 2
S 0 = I 1 + I 2 S 1 = I 1 I 2 S 2 = I 3 I 4 S 3 =2 I 5 S 0
R(x,y;z)={ 1 T k=1 N ( E I k ( x+ c x k r k M ,y+ c y k r k M ) )*I( A DoP k ( x+ c x k r k M ,y+ c y k r k M )>p )whenT N t 0(black)otherwise
T= k=1 N I( A DoP k ( x+ c x k r k M ,y+ c y k r k M )>p )

Metrics