Abstract

A curvature sensor based on a polarization-dependent in-fiber Mach-Zehnder interferometer (MZI) is proposed. The MZI is fabricated by core-offset fusion splicing one section of polarization maintaining fiber (PMF) between two single mode fibers (SMFs). Two independent interference patterns corresponding to the two orthogonal polarization modes for the PMF are obtained. The couple efficiency between the core mode and the cladding mode decreased with the increasing of the bending on the MZI part. The curvature variation on the MZI part can be obtained by detecting the fringe visibility of the interference patterns. A difference arithmetic demodulation method is used to reduce the effects of the light source power fluctuations and temperature cross-sensitivity. Experimental results show that maximal sensitivity of −0.882 dB/m−1 is obtained under a measurement range of 0.1 to 0.35 m−1 for the curvature sensor. With the use of difference arithmetic demodulation method, the temperature-curvature cross-sensitivity and light source power fluctuations effects on the proposed sensor are decreased by 94% and 91%, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [CrossRef]
  2. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  3. T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
    [CrossRef]
  4. X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48(7), 1379–1383 (2006).
    [CrossRef]
  5. L. C. Li, L. Xia, Z. H. Xie, and D. M. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
    [CrossRef] [PubMed]
  6. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
    [CrossRef] [PubMed]
  7. Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, L. Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284(24), 5669–5672 (2011).
    [CrossRef]
  8. W. C. Wong, C. C. Chan, H. P. Gong, and K. C. Leong, “Mach-Zehnder Photonic Crystal Interferometer in Cavity Ring-Down Loop for Curvature Measurement,” IEEE Photon. Technol. Lett. 23(12), 795–797 (2011).
    [CrossRef]
  9. M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
    [CrossRef]
  10. D. M. Hernandez, A. M. Rios, I. T. Gomez, and G. S. Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4381–4382 (2011).
  11. R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazão, “Simultaneous measurement of curvature and strain using a suspended multicore fiber,” Opt. Lett. 36(19), 3939–3941 (2011).
    [CrossRef] [PubMed]
  12. B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol. 17(3), 233–235 (2011).
    [CrossRef]
  13. Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
    [CrossRef]
  14. H. P. Gong, C. C. Chan, P. Zu, L. H. Chen, and X. Y. Dong, “Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop,” Opt. Commun. 283(16), 3142–3144 (2010).
    [CrossRef]
  15. L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
    [CrossRef]
  16. D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
    [CrossRef] [PubMed]
  17. Y. P. Wang, C. L. Zhao, J. Kang, Y. X. Jin, and X. Y. Dong, “A highly birefringent fiber loop mirror temperature sensor demodulation based on a long period grating in photonic crystal fiber with differential processing,” Microw. Opt. Technol. Lett. 54(1), 176–179 (2012).
    [CrossRef]
  18. Y. Li, E. Harris, L. Chen, and X. Y. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
    [CrossRef] [PubMed]
  19. Y. Li, L. Chen, E. Harris, and X. Y. Bao, “Double-Pass In-Line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
    [CrossRef]

2012

Y. P. Wang, C. L. Zhao, J. Kang, Y. X. Jin, and X. Y. Dong, “A highly birefringent fiber loop mirror temperature sensor demodulation based on a long period grating in photonic crystal fiber with differential processing,” Microw. Opt. Technol. Lett. 54(1), 176–179 (2012).
[CrossRef]

L. C. Li, L. Xia, Z. H. Xie, and D. M. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
[CrossRef] [PubMed]

2011

D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
[CrossRef] [PubMed]

R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazão, “Simultaneous measurement of curvature and strain using a suspended multicore fiber,” Opt. Lett. 36(19), 3939–3941 (2011).
[CrossRef] [PubMed]

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, L. Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284(24), 5669–5672 (2011).
[CrossRef]

W. C. Wong, C. C. Chan, H. P. Gong, and K. C. Leong, “Mach-Zehnder Photonic Crystal Interferometer in Cavity Ring-Down Loop for Curvature Measurement,” IEEE Photon. Technol. Lett. 23(12), 795–797 (2011).
[CrossRef]

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

D. M. Hernandez, A. M. Rios, I. T. Gomez, and G. S. Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4381–4382 (2011).

B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol. 17(3), 233–235 (2011).
[CrossRef]

2010

H. P. Gong, C. C. Chan, P. Zu, L. H. Chen, and X. Y. Dong, “Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop,” Opt. Commun. 283(16), 3142–3144 (2010).
[CrossRef]

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[CrossRef]

Y. Li, E. Harris, L. Chen, and X. Y. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[CrossRef] [PubMed]

Y. Li, L. Chen, E. Harris, and X. Y. Bao, “Double-Pass In-Line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

2009

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
[CrossRef]

2008

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

2007

2006

X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48(7), 1379–1383 (2006).
[CrossRef]

Albert, J.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[CrossRef]

Araújo, F. M.

Bao, X. Y.

Y. Li, E. Harris, L. Chen, and X. Y. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[CrossRef] [PubMed]

Y. Li, L. Chen, E. Harris, and X. Y. Bao, “Double-Pass In-Line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

Bock, W. J.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[CrossRef]

Caldas, P.

Chan, C. C.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, L. Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284(24), 5669–5672 (2011).
[CrossRef]

W. C. Wong, C. C. Chan, H. P. Gong, and K. C. Leong, “Mach-Zehnder Photonic Crystal Interferometer in Cavity Ring-Down Loop for Curvature Measurement,” IEEE Photon. Technol. Lett. 23(12), 795–797 (2011).
[CrossRef]

H. P. Gong, C. C. Chan, P. Zu, L. H. Chen, and X. Y. Dong, “Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop,” Opt. Commun. 283(16), 3142–3144 (2010).
[CrossRef]

Chen, L.

Y. Li, E. Harris, L. Chen, and X. Y. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[CrossRef] [PubMed]

Y. Li, L. Chen, E. Harris, and X. Y. Bao, “Double-Pass In-Line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

Chen, L. H.

H. P. Gong, C. C. Chan, P. Zu, L. H. Chen, and X. Y. Dong, “Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop,” Opt. Commun. 283(16), 3142–3144 (2010).
[CrossRef]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Cheng, J.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, L. Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284(24), 5669–5672 (2011).
[CrossRef]

Choi, H. Y.

Delgado, G. S.

D. M. Hernandez, A. M. Rios, I. T. Gomez, and G. S. Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4381–4382 (2011).

Deng, M.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
[CrossRef] [PubMed]

Dong, B.

B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol. 17(3), 233–235 (2011).
[CrossRef]

Dong, X.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, L. Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284(24), 5669–5672 (2011).
[CrossRef]

X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48(7), 1379–1383 (2006).
[CrossRef]

Dong, X. Y.

Y. P. Wang, C. L. Zhao, J. Kang, Y. X. Jin, and X. Y. Dong, “A highly birefringent fiber loop mirror temperature sensor demodulation based on a long period grating in photonic crystal fiber with differential processing,” Microw. Opt. Technol. Lett. 54(1), 176–179 (2012).
[CrossRef]

H. P. Gong, C. C. Chan, P. Zu, L. H. Chen, and X. Y. Dong, “Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop,” Opt. Commun. 283(16), 3142–3144 (2010).
[CrossRef]

Duan, D. W.

Farahi, F.

Ferreira, L. A.

Ferreira, M. S.

Frazão, O.

Gomez, I. T.

D. M. Hernandez, A. M. Rios, I. T. Gomez, and G. S. Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4381–4382 (2011).

Gong, H. P.

W. C. Wong, C. C. Chan, H. P. Gong, and K. C. Leong, “Mach-Zehnder Photonic Crystal Interferometer in Cavity Ring-Down Loop for Curvature Measurement,” IEEE Photon. Technol. Lett. 23(12), 795–797 (2011).
[CrossRef]

H. P. Gong, C. C. Chan, P. Zu, L. H. Chen, and X. Y. Dong, “Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop,” Opt. Commun. 283(16), 3142–3144 (2010).
[CrossRef]

Hao, J. Z.

B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol. 17(3), 233–235 (2011).
[CrossRef]

Harris, E.

Y. Li, E. Harris, L. Chen, and X. Y. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[CrossRef] [PubMed]

Y. Li, L. Chen, E. Harris, and X. Y. Bao, “Double-Pass In-Line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

Hernandez, D. M.

D. M. Hernandez, A. M. Rios, I. T. Gomez, and G. S. Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4381–4382 (2011).

Jin, Y. X.

Y. P. Wang, C. L. Zhao, J. Kang, Y. X. Jin, and X. Y. Dong, “A highly birefringent fiber loop mirror temperature sensor demodulation based on a long period grating in photonic crystal fiber with differential processing,” Microw. Opt. Technol. Lett. 54(1), 176–179 (2012).
[CrossRef]

Kang, J.

Y. P. Wang, C. L. Zhao, J. Kang, Y. X. Jin, and X. Y. Dong, “A highly birefringent fiber loop mirror temperature sensor demodulation based on a long period grating in photonic crystal fiber with differential processing,” Microw. Opt. Technol. Lett. 54(1), 176–179 (2012).
[CrossRef]

Kim, M. J.

Kobelke, J.

Lan, X.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
[CrossRef]

Laronche, A.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[CrossRef]

Lee, B. H.

Leong, K. C.

W. C. Wong, C. C. Chan, H. P. Gong, and K. C. Leong, “Mach-Zehnder Photonic Crystal Interferometer in Cavity Ring-Down Loop for Curvature Measurement,” IEEE Photon. Technol. Lett. 23(12), 795–797 (2011).
[CrossRef]

Li, L. C.

Li, Y.

Y. Li, E. Harris, L. Chen, and X. Y. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[CrossRef] [PubMed]

Y. Li, L. Chen, E. Harris, and X. Y. Bao, “Double-Pass In-Line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

Liu, D. M.

Loock, H. P.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Mikulic, P.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[CrossRef]

Rao, Y. J.

D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
[CrossRef] [PubMed]

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

Rios, A. M.

D. M. Hernandez, A. M. Rios, I. T. Gomez, and G. S. Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4381–4382 (2011).

Santos, J. L.

Schuster, K.

Shao, L. Y.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, L. Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284(24), 5669–5672 (2011).
[CrossRef]

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[CrossRef]

Shi, L. L.

Shum, P.

X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48(7), 1379–1383 (2006).
[CrossRef]

Silva, R. M.

Smietana, M.

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Tang, C. P.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

Tian, Z.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

Viegas, J.

Wang, Y. P.

Y. P. Wang, C. L. Zhao, J. Kang, Y. X. Jin, and X. Y. Dong, “A highly birefringent fiber loop mirror temperature sensor demodulation based on a long period grating in photonic crystal fiber with differential processing,” Microw. Opt. Technol. Lett. 54(1), 176–179 (2012).
[CrossRef]

Wei, T.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
[CrossRef]

Wong, W. C.

W. C. Wong, C. C. Chan, H. P. Gong, and K. C. Leong, “Mach-Zehnder Photonic Crystal Interferometer in Cavity Ring-Down Loop for Curvature Measurement,” IEEE Photon. Technol. Lett. 23(12), 795–797 (2011).
[CrossRef]

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, L. Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284(24), 5669–5672 (2011).
[CrossRef]

Wu, D.

Xia, L.

Xiao, H.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
[CrossRef]

Xie, Z. H.

Xu, Z. W.

B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol. 17(3), 233–235 (2011).
[CrossRef]

Yam, S. S. H.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

Yao, J.

Yu, X.

X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48(7), 1379–1383 (2006).
[CrossRef]

Zhao, C. L.

Y. P. Wang, C. L. Zhao, J. Kang, Y. X. Jin, and X. Y. Dong, “A highly birefringent fiber loop mirror temperature sensor demodulation based on a long period grating in photonic crystal fiber with differential processing,” Microw. Opt. Technol. Lett. 54(1), 176–179 (2012).
[CrossRef]

Zhou, W. J.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, L. Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284(24), 5669–5672 (2011).
[CrossRef]

Zhou, Y.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, L. Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284(24), 5669–5672 (2011).
[CrossRef]

Zhu, T.

D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
[CrossRef] [PubMed]

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

Zu, P.

H. P. Gong, C. C. Chan, P. Zu, L. H. Chen, and X. Y. Dong, “Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop,” Opt. Commun. 283(16), 3142–3144 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21(10), 669–671 (2009).
[CrossRef]

W. C. Wong, C. C. Chan, H. P. Gong, and K. C. Leong, “Mach-Zehnder Photonic Crystal Interferometer in Cavity Ring-Down Loop for Curvature Measurement,” IEEE Photon. Technol. Lett. 23(12), 795–797 (2011).
[CrossRef]

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

Y. Li, L. Chen, E. Harris, and X. Y. Bao, “Double-Pass In-Line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett. 22(23), 1750–1752 (2010).
[CrossRef]

Microw. Opt. Technol. Lett.

Y. P. Wang, C. L. Zhao, J. Kang, Y. X. Jin, and X. Y. Dong, “A highly birefringent fiber loop mirror temperature sensor demodulation based on a long period grating in photonic crystal fiber with differential processing,” Microw. Opt. Technol. Lett. 54(1), 176–179 (2012).
[CrossRef]

X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48(7), 1379–1383 (2006).
[CrossRef]

Opt. Commun.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, L. Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284(24), 5669–5672 (2011).
[CrossRef]

H. P. Gong, C. C. Chan, P. Zu, L. H. Chen, and X. Y. Dong, “Curvature measurement by using low-birefringence photonic crystal fiber based Sagnac loop,” Opt. Commun. 283(16), 3142–3144 (2010).
[CrossRef]

L. Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[CrossRef]

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

B. Dong, J. Z. Hao, and Z. W. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol. 17(3), 233–235 (2011).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the proposed curvature sensor. The inset picture shows the partially enlarged drawing of the sensing head

Fig. 2
Fig. 2

(a) Schematic diagram of the SMF is mismatched fusion spliced along the direction between the slow and fast axis of the PMF. Initial interference pattern of the polarization-dependent MZI as the SMF is offset along the (b) fast axis, (c) slow axis and (d) between the fast and slow axis of the PMF.

Fig. 3
Fig. 3

Spatial frequency spectra of the proposed sensor.

Fig. 4
Fig. 4

The fringe visibility variation of the interference patterns corresponding to fast polarization mode and slow polarization mode as the curvature variation.

Fig. 5
Fig. 5

Fringes visibility variation of the interference patterns for the two orthogonal polarization modes as a function of the curvature.

Fig. 6
Fig. 6

Interference patterns variation as function of (a) the light source power fluctuations and (b) the temperature response.

Fig. 7
Fig. 7

(a) Light source power fluctuations and (b) temperature response of the proposed curvature sensor before and after using difference arithmetic demodulation method.

Fig. 8
Fig. 8

Relationship between the fringe visibility and the curvature after using difference arithmetic demodulation method.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ m =2πΔ n eff m L/λ
I= I 1 + I 2 +2 I 1 I 2 cos( Φ m )
Δ n eff,s m = n eff,s core n eff,s clad Δ n eff,f m = n eff,f core n eff,f clad
λ s = 2( n eff,s core n eff,s clad )L 2k+1 λ f = 2( n eff,f core n eff,f clad )L 2k+1
K= 2 I 1 I 2 I 1 + I 2

Metrics