Abstract

CW laser operation and first mode-locked laser operation of Yb:LuAG ceramic are reported. Efficient CW laser operation was obtained with maximum output power of 2.14 W and a 72% slope efficiency. Femtosecond mode-locked laser operation was achieved with pulse duration of 699 fs and a 200 mW average output power.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. E. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” Opt. Express 20(7), 7054–7065 (2012).
    [CrossRef] [PubMed]
  2. C. R. E. Baer, C. Kränkel, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “227-fs pulses from a mode-locked Yb:LuScO3 thin disk laser,” Opt. Express 17(13), 10725–10730 (2009).
    [CrossRef] [PubMed]
  3. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
    [CrossRef] [PubMed]
  4. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
    [CrossRef] [PubMed]
  5. S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett. 36(21), 4134–4136 (2011).
    [CrossRef] [PubMed]
  6. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
    [CrossRef] [PubMed]
  7. T. H. Geballe and G. W. Hull, “Isotopic and Other Types of Thermal Resistance in Germanium,” Phys. Rev. 110(3), 773–775 (1958).
    [CrossRef]
  8. M. E. Wieser and T. B. Coplen, “Atomic weights of the elements 2009 (IUPAC Technical Report),” Pure Appl. Chem. 83(2), 359–396 (2011).
    [CrossRef]
  9. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb:LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
    [CrossRef] [PubMed]
  10. J. He, X. Liang, J. Li, H. Yu, X. Xu, Z. Zhao, J. Xu, and Z. Xu, “LD pumped Yb:LuAG mode-locked laser with 7.63ps duration,” Opt. Express 17(14), 11537–11542 (2009).
    [CrossRef] [PubMed]
  11. A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
    [CrossRef]
  12. C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
    [CrossRef]
  13. T. Yanagitani and H. Yagi, J. P. Appl. Nos 10–101333 and 10–101411 (1998).
  14. M. S. Akchurin, R. V. Gainutdinov, I. I. Kupenko, K. Yagi, K. Ueda, A. Shirakava, and A. A. Kaminskii, “Lutetium–Aluminum Garnet Laser Ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
    [CrossRef]
  15. H. Nakao, A. Shirakawa, K. Ueda, A. A. Kaminskii, S. Kuretake, N. Tanaka, Y. Kintaka, K. Kageyama, H. Yagi, and T. Yanagitani, “Investigation of the laser and optical properties of new laser materials,” in 7th Laser Ceramics Symposium, paper I-6, Singapore, Nov. 15, 2011. (invited talk)
  16. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [CrossRef]
  17. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
    [CrossRef]
  18. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror,” J. Opt. Soc. Am. B 16(6), 895–904 (1999).
    [CrossRef]

2012 (3)

2011 (5)

M. S. Akchurin, R. V. Gainutdinov, I. I. Kupenko, K. Yagi, K. Ueda, A. Shirakava, and A. A. Kaminskii, “Lutetium–Aluminum Garnet Laser Ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[CrossRef]

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

M. E. Wieser and T. B. Coplen, “Atomic weights of the elements 2009 (IUPAC Technical Report),” Pure Appl. Chem. 83(2), 359–396 (2011).
[CrossRef]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
[CrossRef] [PubMed]

S. Ricaud, A. Jaffres, P. Loiseau, B. Viana, B. Weichelt, M. Abdou-Ahmed, A. Voss, T. Graf, D. Rytz, M. Delaigue, E. Mottay, P. Georges, and F. Druon, “Yb:CaGdAlO4 thin-disk laser,” Opt. Lett. 36(21), 4134–4136 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

2007 (1)

1999 (2)

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

1958 (1)

T. H. Geballe and G. W. Hull, “Isotopic and Other Types of Thermal Resistance in Germanium,” Phys. Rev. 110(3), 773–775 (1958).
[CrossRef]

Abdou-Ahmed, M.

Akchurin, M. S.

M. S. Akchurin, R. V. Gainutdinov, I. I. Kupenko, K. Yagi, K. Ueda, A. Shirakava, and A. A. Kaminskii, “Lutetium–Aluminum Garnet Laser Ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[CrossRef]

Akhmediev, N. N.

Amann, M. C.

Apolonski, A.

Baer, C. R. E.

Bagayev, S. N.

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Bauer, D.

Beil, K.

Boehm, G.

Brons, J.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Coplen, T. B.

M. E. Wieser and T. B. Coplen, “Atomic weights of the elements 2009 (IUPAC Technical Report),” Pure Appl. Chem. 83(2), 359–396 (2011).
[CrossRef]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Dekorsy, T.

Delaigue, M.

Dong, J.

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

Druon, F.

Eichler, H. J.

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

Fredrich-Thornton, S. T.

Gainutdinov, R. V.

M. S. Akchurin, R. V. Gainutdinov, I. I. Kupenko, K. Yagi, K. Ueda, A. Shirakava, and A. A. Kaminskii, “Lutetium–Aluminum Garnet Laser Ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[CrossRef]

Geballe, T. H.

T. H. Geballe and G. W. Hull, “Isotopic and Other Types of Thermal Resistance in Germanium,” Phys. Rev. 110(3), 773–775 (1958).
[CrossRef]

Georges, P.

Golling, M.

Graf, T.

Grasse, C.

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

He, J.

Heckl, O. H.

Hönninger, C.

Huber, G.

Hull, G. W.

T. H. Geballe and G. W. Hull, “Isotopic and Other Types of Thermal Resistance in Germanium,” Phys. Rev. 110(3), 773–775 (1958).
[CrossRef]

Jaffres, A.

Jagadish, C.

Kalashnikov, V. L.

Kaminskii, A. A.

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

M. S. Akchurin, R. V. Gainutdinov, I. I. Kupenko, K. Yagi, K. Ueda, A. Shirakava, and A. A. Kaminskii, “Lutetium–Aluminum Garnet Laser Ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

Keller, U.

Killi, A.

Kränkel, C.

Krausz, F.

Kupenko, I. I.

M. S. Akchurin, R. V. Gainutdinov, I. I. Kupenko, K. Yagi, K. Ueda, A. Shirakava, and A. A. Kaminskii, “Lutetium–Aluminum Garnet Laser Ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[CrossRef]

Lederer, M. J.

Li, J.

Liang, X.

Loiseau, P.

Luo, D. W.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[CrossRef]

Luther-Davies, B.

Lux, O.

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Morier-Genoud, F.

Moser, M.

Mottay, E.

Paschotta, R.

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Pervak, V.

Petermann, K.

Peters, R.

Pronin, O.

Qin, X. P.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[CrossRef]

Rhee, H.

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

Ricaud, S.

Rytz, D.

Saraceno, C. J.

Schriber, C.

Shirakava, A.

M. S. Akchurin, R. V. Gainutdinov, I. I. Kupenko, K. Yagi, K. Ueda, A. Shirakava, and A. A. Kaminskii, “Lutetium–Aluminum Garnet Laser Ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[CrossRef]

Shirakawa, A.

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

Soto-Crespo, J. M.

Südmeyer, T.

Sutter, D. H.

Tan, H. H.

Tan, W. D.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[CrossRef]

Tang, D. Y.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[CrossRef]

Tellkamp, F.

Tokurakawa, M.

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Ueda, K.

M. S. Akchurin, R. V. Gainutdinov, I. I. Kupenko, K. Yagi, K. Ueda, A. Shirakava, and A. A. Kaminskii, “Lutetium–Aluminum Garnet Laser Ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[CrossRef]

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

Viana, B.

Voss, A.

Weichelt, B.

Wieser, M. E.

M. E. Wieser and T. B. Coplen, “Atomic weights of the elements 2009 (IUPAC Technical Report),” Pure Appl. Chem. 83(2), 359–396 (2011).
[CrossRef]

Xu, C. W.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[CrossRef]

Xu, J.

Xu, X.

Xu, Z.

Yagi, H.

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

Yagi, K.

M. S. Akchurin, R. V. Gainutdinov, I. I. Kupenko, K. Yagi, K. Ueda, A. Shirakava, and A. A. Kaminskii, “Lutetium–Aluminum Garnet Laser Ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[CrossRef]

Yanagitani, T.

Yang, H.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[CrossRef]

Yu, H.

Zawischa, I.

Zhang, J.

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[CrossRef]

Zhao, Z.

Dokl. Phys. (1)

M. S. Akchurin, R. V. Gainutdinov, I. I. Kupenko, K. Yagi, K. Ueda, A. Shirakava, and A. A. Kaminskii, “Lutetium–Aluminum Garnet Laser Ceramics,” Dokl. Phys. 56(12), 589–592 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (2)

A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Ln- and TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011).
[CrossRef]

C. W. Xu, D. W. Luo, J. Zhang, H. Yang, X. P. Qin, W. D. Tan, and D. Y. Tang, “Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser,” Laser Phys. Lett. 9(1), 30–34 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. (1)

T. H. Geballe and G. W. Hull, “Isotopic and Other Types of Thermal Resistance in Germanium,” Phys. Rev. 110(3), 773–775 (1958).
[CrossRef]

Pure Appl. Chem. (1)

M. E. Wieser and T. B. Coplen, “Atomic weights of the elements 2009 (IUPAC Technical Report),” Pure Appl. Chem. 83(2), 359–396 (2011).
[CrossRef]

Other (2)

T. Yanagitani and H. Yagi, J. P. Appl. Nos 10–101333 and 10–101411 (1998).

H. Nakao, A. Shirakawa, K. Ueda, A. A. Kaminskii, S. Kuretake, N. Tanaka, Y. Kintaka, K. Kageyama, H. Yagi, and T. Yanagitani, “Investigation of the laser and optical properties of new laser materials,” in 7th Laser Ceramics Symposium, paper I-6, Singapore, Nov. 15, 2011. (invited talk)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Absorption cross section spectrum of 10 at.% Yb:LuAG ceramic and (b) emission cross section spectra of Yb:LuAG and Yb:YAG ceramics.

Fig. 2
Fig. 2

Schematic of the CW laser experiment.

Fig. 3
Fig. 3

Output power and optical-to-optical efficiency against the absorbed pump power.

Fig. 4
Fig. 4

The laser spectra for (a) 1% OC, (b) 3% OC, (c) 5% OC with Pabs = 470 mW, (d) 5% OC with Pabs = 2.0 W and (e) 5% OC with Pabs = 3.9 W.

Fig. 5
Fig. 5

Small-signal gain spectra at different pump densities. The threshold levels for the three output couplers are indicated by dashed lines.

Fig. 6
Fig. 6

Schematic of the passively mode-locked laser experiment. Inset: Pump beam profile at the focusing with the spot diameters of 20 (vertical) × 90 (horizontal) μm in air.

Fig. 7
Fig. 7

(a) SHG autocorrelation trace. The red curve is the sech2-fit. (b) Laser spectrum.

Fig. 8
Fig. 8

Input-output property.

Fig. 9
Fig. 9

Oscillograms of mode-locked pulse train with Pavg = 200 mW in the time scales of (a) 4 μs/div and (b) 2 ns/div.

Tables (1)

Tables Icon

Table 1 Thermal Properties of LuAG and Yb:LuAG Ceramics and Single Crystals

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K=α C p ρ.

Metrics