Abstract

We propose and experimentally demonstrate a demodulation technique for real-time monitoring the change process of liquid concentration based on a tilted fiber Bragg grating (TFBG) and differential amplification detection. Continuous variations of the TFBG transmission power are measured by using two photodiodes (or a precision reference voltage generator instead of the referenced photodiode) along with two integrated operational amplifier circuits (IOAC). The voltage-concentration curves are obtained, by recording the output voltages of the two IOACs at different time. The experimental results show that such a fast demodulation technique is capable of measuring the effective glycerol solution concentration over the range of about 89%~69%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Albert, “Tilted fiber Bragg gratings as multi-sensors,” Opt. Photon. News 22(10), 28–33 (2011).
    [CrossRef]
  2. K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
    [CrossRef]
  3. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
    [CrossRef]
  4. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
    [CrossRef]
  5. S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
    [CrossRef]
  6. I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107(2), 738–741 (2005).
    [CrossRef]
  7. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4(11), 457–466 (1999).
    [CrossRef] [PubMed]
  8. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16(9), 1606–1612 (1998).
    [CrossRef]
  9. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
    [CrossRef]
  10. C.-L. Zhao, X. Yang, M. S. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24(2), 879–883 (2006).
    [CrossRef]
  11. C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]
  12. Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
    [CrossRef]
  13. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
    [CrossRef]
  14. C. Caucheteur and P. Megret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
    [CrossRef]
  15. B. Jiang, J. Zhao, C. Qin, W. Jiang, A. Rauf, F. Fan, and Z. Huang, “Method for measuring liquid phase diffusion based on tilted fiber Bragg grating,” Opt. Lett. 36(21), 4308–4310 (2011).
    [CrossRef] [PubMed]
  16. Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
    [CrossRef]
  17. T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
    [CrossRef]
  18. X. Shi, S. Zheng, H. Chi, X. Jin, and X. Zhang, “Refractive index sensor based on tilted fiber Bragg grating and stimulated Brillouin scattering,” Opt. Express 20(10), 10853–10858 (2012).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

J. Albert, “Tilted fiber Bragg gratings as multi-sensors,” Opt. Photon. News 22(10), 28–33 (2011).
[CrossRef]

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[CrossRef]

B. Jiang, J. Zhao, C. Qin, W. Jiang, A. Rauf, F. Fan, and Z. Huang, “Method for measuring liquid phase diffusion based on tilted fiber Bragg grating,” Opt. Lett. 36(21), 4308–4310 (2011).
[CrossRef] [PubMed]

2010 (1)

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
[CrossRef]

2009 (1)

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[CrossRef]

2008 (1)

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (4)

C. Caucheteur and P. Megret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[CrossRef]

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107(2), 738–741 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

2004 (1)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

2001 (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

1999 (1)

1998 (1)

1996 (1)

Albert, J.

J. Albert, “Tilted fiber Bragg gratings as multi-sensors,” Opt. Photon. News 22(10), 28–33 (2011).
[CrossRef]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[CrossRef]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Ashwell, G. J.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107(2), 738–741 (2005).
[CrossRef]

Bennion, I.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

Bhatia, V.

Bucholtz, F.

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Caucheteur, C.

C. Caucheteur and P. Megret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[CrossRef]

Chan, C.-F.

Chen, C.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[CrossRef]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Chen, X.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

Chi, H.

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

Demokan, M. S.

Erdogan, T.

Fan, F.

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Guo, T.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[CrossRef]

Hu, D.

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[CrossRef]

Huang, Z.

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

Ishaq, I. M.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107(2), 738–741 (2005).
[CrossRef]

Jafari, A.

James, S. W.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107(2), 738–741 (2005).
[CrossRef]

Jeong, M.-Y.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
[CrossRef]

Jiang, B.

Jiang, Q.

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[CrossRef]

Jiang, W.

Jin, W.

Jin, X.

Kersey, A. D.

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Laronche, A.

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[CrossRef]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

Lee, S.-M.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
[CrossRef]

Liu, B.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[CrossRef]

Lopez-Higuera, J. M.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107(2), 738–741 (2005).
[CrossRef]

Megret, P.

C. Caucheteur and P. Megret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[CrossRef]

Miao, Y. P.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[CrossRef]

Patrick, H. J.

Qin, C.

Quintela, A.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107(2), 738–741 (2005).
[CrossRef]

Rauf, A.

Saini, S. S.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

Shi, X.

Sipe, J. E.

Tatam, R. P.

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107(2), 738–741 (2005).
[CrossRef]

Thomson, D. J.

Yang, M.

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[CrossRef]

Yang, X.

Zhang, L.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

Zhang, X.

Zhao, C.-L.

Zhao, J.

Zhao, Q. D.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[CrossRef]

Zheng, S.

Zhou, K.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 22(19), 1431–1433 (2010).
[CrossRef]

C. Caucheteur and P. Megret, “Demodulation technique for weakly tilted fiber Bragg grating refractometer,” IEEE Photon. Technol. Lett. 17(12), 2703–2705 (2005).
[CrossRef]

T. Guo, C. Chen, A. Laronche, and J. Albert, “Power-referenced and temperature-calibrated optical fiber refractometer,” IEEE Photon. Technol. Lett. 20(8), 635–637 (2008).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

J. Albert, “Tilted fiber Bragg gratings as multi-sensors,” Opt. Photon. News 22(10), 28–33 (2011).
[CrossRef]

Sens. Actuators A Phys. (1)

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[CrossRef]

Sens. Actuators B Chem. (1)

I. M. Ishaq, A. Quintela, S. W. James, G. J. Ashwell, J. M. Lopez-Higuera, and R. P. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays,” Sens. Actuators B Chem. 107(2), 738–741 (2005).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (545 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of real-time monitoring system of liquid concentration (The dashed region contains the sample cell of liquid phase diffusion). PD: Photodiode; PRVG: Precision reference voltage generator; IOAC: Integrated operational amplifier circuit; C: Channel; IMG: Index matching gel.

Fig. 2
Fig. 2

Transmission spectrum (blue line) of a 4° TFBG after filtering through CFBG. (Red line: reflection spectrum of CFBG; black line: spectrum of ASE source).

Fig. 3
Fig. 3

Evolution of the TFBG transmission spectrum with the diffusion time (Media 1).

Fig. 4
Fig. 4

Variation of the normalized area and glycerol concentration with the diffusion time. The inset shows the TFBG transmission spectrum with marked the upper and lower envelope curves of the cladding mode at T = 90min.

Fig. 5
Fig. 5

Response curves of the voltages from channel-1 (C-1) and channel-2 (C-2) with the diffusion time (a) and the glycerol concentration (b).

Fig. 6
Fig. 6

Voltage waveform and its gradient when the TFBG is immersed in the glycerol. The inset shows the original waveform from an oscilloscope.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P 1 = λ min λ max 1 4 G(λ) R CFBG (λ) T TFBG (λ)dλ,
P 2 = λ min λ max 1 2 G(λ) R CFBG (λ)dλ,
A= λ 1 λ 2 [ ξ up ( λ ) ξ low ( λ ) ]dλ λ 1 λ 2 [ ξ up R ( λ ) ξ low R ( λ ) ]dλ ,
V C1 =0.24468exp( C/23.90968 )6.70823,
V C2 =0.01945exp( C/14.67185 )6.28890,

Metrics