Abstract

In this paper we report experimental investigation in transmission performance over standard single-mode optical fibers (SMFs) of polarization-entangled photon-pairs in a 1.5-μm band generated by cascaded second-harmonic generation and spontaneous parametric down conversion (c-SHG/SPDC) from a periodically poled LiNbO3 (PPLN) ridge-waveguide device. Clear two-photon interference fringes were observed even after the transmission over 140 km of the SMF spools, remaining small degradation in the visibilities of less than 3%. The performance was also investigated by using optical attenuators, instead of the SMF spools, to study the maximum reach of the distribution of the entanglement in terms of loss penalty. The results show that the quantum entanglement could be distributed even with 50 dB of the transmission loss with violation of Bell inequality by using the c-SHG/SPDC-based photon-pair source.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” post deadline paper, Optical Fiber Communications Conference (OFC’2006), paper PDP35.
  2. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express15(21), 13957–13964 (2007).
    [CrossRef] [PubMed]
  3. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express15(12), 7853–7862 (2007).
    [CrossRef] [PubMed]
  4. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express16(8), 5776–5781 (2008).
    [CrossRef] [PubMed]
  5. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express16(23), 19118–19126 (2008).
    [CrossRef] [PubMed]
  6. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Distribution of polarization-entangled photon pairs produced via spontaneous parametric down-conversion within a local-area fiber network: Theoretical model and experiment,” Opt. Express16(19), 14512–14523 (2008).
    [CrossRef] [PubMed]
  7. J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17(14), 11440–11449 (2009).
    [CrossRef] [PubMed]
  8. A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
    [CrossRef]
  9. K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express13(1), 202–209 (2005).
    [CrossRef] [PubMed]
  10. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
    [CrossRef]
  11. H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13(20), 7832–7839 (2005).
    [CrossRef] [PubMed]
  12. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express16(25), 20368–20373 (2008).
    [CrossRef] [PubMed]
  13. M. Hunault, H. Takesue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled LiNbO3 waveguide,” Opt. Lett.35(8), 1239–1241 (2010).
    [CrossRef] [PubMed]
  14. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express19(17), 16032–16043 (2011).
    [CrossRef] [PubMed]
  15. S. Arahira, N. Namekata, T. Kishimoto, and S. Inoue, “Experimental studies in generation of high-purity photon-pairs using cascaded χ2 processes in a periodically poled LiNbO3 ridge-waveguide device,” J. Opt. Soc. Am. B29(3), 434–442 (2012).
    [CrossRef]
  16. G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated plug & play quantum key distribution,” Electron. Lett.34(22), 2116–2117 (1998).
    [CrossRef]
  17. B. Miquel and H. Takesue, “Observation of 1.5μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009).
    [CrossRef]
  18. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express16(8), 5721–5727 (2008).
    [CrossRef] [PubMed]

2012

2011

2010

2009

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17(14), 11440–11449 (2009).
[CrossRef] [PubMed]

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
[CrossRef]

B. Miquel and H. Takesue, “Observation of 1.5μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009).
[CrossRef]

2008

2007

2005

1998

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated plug & play quantum key distribution,” Electron. Lett.34(22), 2116–2117 (1998).
[CrossRef]

Arahira, S.

Asobe, M.

Baek, B.

Barbieri, C.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Blauensteiner, B.

Böhm, H. R.

Dynes, J. F.

Fedrizzi, A.

Fejer, M. M.

Ferrini, D.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
[CrossRef]

Fujiwara, M.

Fukuda, H.

Fürst, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Gautier, J.-D.

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated plug & play quantum key distribution,” Electron. Lett.34(22), 2116–2117 (1998).
[CrossRef]

Gisin, N.

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated plug & play quantum key distribution,” Electron. Lett.34(22), 2116–2117 (1998).
[CrossRef]

Guinnard, O.

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated plug & play quantum key distribution,” Electron. Lett.34(22), 2116–2117 (1998).
[CrossRef]

Hadfield, R.

Harada, K.

Hentschel, M.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
[CrossRef]

Honjo, T.

Hübel, H.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
[CrossRef]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express15(12), 7853–7862 (2007).
[CrossRef] [PubMed]

Hunault, M.

Inoue, K.

Inoue, S.

Itabashi, S.

Jennewein, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Kamada, H.

Kikuchi, K.

Kishimoto, T.

Kurtsiefer, C.

Langrock, C.

Lederer, T.

Lim, H. C.

Lindenthal, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express13(1), 202–209 (2005).
[CrossRef] [PubMed]

Lorünser, T.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
[CrossRef]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express15(12), 7853–7862 (2007).
[CrossRef] [PubMed]

Matyus, T.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
[CrossRef]

Meyenburg, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Miki, S.

Miquel, B.

B. Miquel and H. Takesue, “Observation of 1.5μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009).
[CrossRef]

Nam, S. W.

Namekata, N.

Nishida, Y.

Ömer, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Perdigues, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Poppe, A.

Querasser, E.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
[CrossRef]

Rarity, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Resch, K. J.

Ribordy, G.

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated plug & play quantum key distribution,” Electron. Lett.34(22), 2116–2117 (1998).
[CrossRef]

Sasaki, M.

Scheidl, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Schmitt-Manderbach, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express13(1), 202–209 (2005).
[CrossRef] [PubMed]

Sharpe, A. W.

Shields, A. J.

Sodnik, Z.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Tadanaga, O.

Takesue, H.

M. Hunault, H. Takesue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled LiNbO3 waveguide,” Opt. Lett.35(8), 1239–1241 (2010).
[CrossRef] [PubMed]

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17(14), 11440–11449 (2009).
[CrossRef] [PubMed]

B. Miquel and H. Takesue, “Observation of 1.5μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009).
[CrossRef]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express16(8), 5721–5727 (2008).
[CrossRef] [PubMed]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express16(23), 19118–19126 (2008).
[CrossRef] [PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express16(8), 5776–5781 (2008).
[CrossRef] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express15(21), 13957–13964 (2007).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13(20), 7832–7839 (2005).
[CrossRef] [PubMed]

Taraba, M.

Tiefenbacher, F.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Tokura, Y.

Treiber, A.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
[CrossRef]

Trojek, P.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

Tsuchida, H.

Tsuchizawa, T.

Ursin, R.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express13(1), 202–209 (2005).
[CrossRef] [PubMed]

Vanner, M. R.

Walther, P.

Wang, Z.

Watanabe, T.

Weier, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express13(1), 202–209 (2005).
[CrossRef] [PubMed]

Weinfurter, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express13(1), 202–209 (2005).
[CrossRef] [PubMed]

Xie, X.

Yaegashi, H.

Yamada, K.

Yamamoto, Y.

Yoshizawa, A.

Yuan, Z. L.

Zbinden, H.

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated plug & play quantum key distribution,” Electron. Lett.34(22), 2116–2117 (1998).
[CrossRef]

Zeilinger, A.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
[CrossRef]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express15(12), 7853–7862 (2007).
[CrossRef] [PubMed]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express13(1), 202–209 (2005).
[CrossRef] [PubMed]

Zhang, Q.

Electron. Lett.

G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated plug & play quantum key distribution,” Electron. Lett.34(22), 2116–2117 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Phys.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3(7), 481–486 (2007).
[CrossRef]

New J. Phys.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11(4), 045013 (2009).
[CrossRef]

B. Miquel and H. Takesue, “Observation of 1.5μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys.11(4), 045006 (2009).
[CrossRef]

Opt. Express

K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express13(1), 202–209 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13(20), 7832–7839 (2005).
[CrossRef] [PubMed]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express15(12), 7853–7862 (2007).
[CrossRef] [PubMed]

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express15(21), 13957–13964 (2007).
[CrossRef] [PubMed]

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express16(8), 5721–5727 (2008).
[CrossRef] [PubMed]

Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express16(8), 5776–5781 (2008).
[CrossRef] [PubMed]

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Distribution of polarization-entangled photon pairs produced via spontaneous parametric down-conversion within a local-area fiber network: Theoretical model and experiment,” Opt. Express16(19), 14512–14523 (2008).
[CrossRef] [PubMed]

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express16(23), 19118–19126 (2008).
[CrossRef] [PubMed]

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express16(25), 20368–20373 (2008).
[CrossRef] [PubMed]

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17(14), 11440–11449 (2009).
[CrossRef] [PubMed]

S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express19(17), 16032–16043 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Other

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” post deadline paper, Optical Fiber Communications Conference (OFC’2006), paper PDP35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. PBSC: polarization beam splitter/combiner. OPBC: optical phase-bias compensator. PC: polarization controller. Pol.: rotatable fiber polarizer.

Fig. 2
Fig. 2

Transmission lines used in this study. (A) transmission over SMF reel. (B) transmission with variable optical attenuator.

Fig. 3
Fig. 3

Two-photon interference fringes after (a) 0 km (back-to-back), (b) 40 km, and (c) 140 km transmission over the SMF fiber reels. Black closed circles: results of the H/V basis. Red closed circles: results of the diagonal basis. Polarizer angle of the signal polarizer (θs) were 0° (H/V basis) and + 45° (diagonal basis), respectively. The solid curves in the figures are fitting curves assuming cos 2 ( θ s θ i ) .

Fig. 4
Fig. 4

Two-photon interference fringes when additional losses were given by the optical attenuators. (a) −8 dB/channel. (b) −18 dB/channel. (c) −25 dB/channel. Black closed circles: results of the H/V basis. Red closed circles: results of the diagonal basis. Polarizer angle of the signal polarizer (θs) were 0° (H/V basis) and + 45° (diagonal basis), respectively. The solid curves in the figures are fitting curves assuming cos 2 ( θ s θ i ) .

Fig. 5
Fig. 5

Dependence of the visibilities in the two-photon interference fringes on the single channel loss. Circles: experimental results with the SMF fiber reels. Triangles: experimental results with the optical attenuators. Black solid curve: calculation results using Eq. (1). Black dashed curve: calculation including the pulse broadening due to the CD. Results in Ref [7]. were also shown as gray squares for comparison.

Fig. 6
Fig. 6

Dependence of the coincidence count rates on the single channel loss. Black closed circles: experimental results with the SMF fiber reels. Red closed circles: experimental results with the optical attenuators. Solid curve: calculation results only considering optical losses. Dashed curve: calculation results considering both the optical losses and the pulse broadening due to the chromatic dispersion (CD) of the SMF.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V= μ c α s α i η s η i 2 μ c α s α i η s η i 2 +2( μ c α s η s 2 + s ns + d s )( μ c α i η i 2 + s ni + d i )
μ c α s α i η s η i 2 +( μ c α s η s 2 + d s )( μ c α i η i 2 + d i )
η x = η ( 0 )x p tr ( t )g( t )dt p tr ( t )dt

Metrics