Abstract

Optical communication is a high-capacity method that can handle considerable satellite data. When common-fiber optical devices such as optical fiber amplifiers based on single mode fibers are used in free-space laser communication systems, the laser beam has to be coupled to a single-mode fiber. Under atmospheric turbulence it would be difficult to make the required fiber coupling efficiency in satellite-to-ground laser propagation paths. A fast-steering mirror that can operate at high frequencies under atmospheric turbulence is fabricated, and its tracking performance is verified in real satellite-to-ground laser communication experiments. The measured fiber coupling loss of 10–19 dB in satellite-to-ground laser communication links under atmospheric turbulence shows good agreement with the predicted fiber coupling efficiency of 17 dB.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Toyoshima, “Trends in satellite communications and the role of optical free-space communications [Invited],” J. Opt. Netw.4(6), 300–311 (2005).
    [CrossRef]
  2. V. W. S. Chan, “Optical satellite networks,” J. Lightwave Technol.21(11), 2811–2827 (2003).
    [CrossRef]
  3. Y. Koyama, Y. Takayama, and H. Kunimori, “Optical fiber amplifiers for space environments,” Int. Conf. Struct. Surf.2009(37), 221–225 (2009).
  4. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A19(9), 1794–1802 (2002).
    [CrossRef] [PubMed]
  5. F. Fidler and O. Wallner, “Application of single-mode fiber-coupled receivers in optical satellite to high-altitude platform communications,” EURASIP J. Wirel. Commun. Netw.2008, 864031 (2008).
  6. M. Toyoshima, “Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications,” J. Opt. Soc. Am. A23(9), 2246–2250 (2006).
    [CrossRef] [PubMed]
  7. Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt.44(23), 4946–4952 (2005).
    [CrossRef] [PubMed]
  8. T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).
  9. J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt.30(15), 1982–1994 (1991).
    [CrossRef] [PubMed]
  10. L. C. Andrews, R. L. Phillips, and P. T. Yu, “Optical scintillations and fade statistics for a satellite-communication system,” Appl. Opt.34(33), 7742–7751 (1995).
    [CrossRef] [PubMed]
  11. M. Toyoshima, Y. Takayama, H. Kunimori, and T. Jono, “Probability density function of the atmospheric turbulence-induced signal fluctuation in a ground-to-low earth orbit optical communication link,” Proc. 25th LSS, 30–36, (2007).
  12. T. Abe, T. Kizaki, H. Kunimori, Y. Takayama, and M. Toyoshima, “The development of two-axes fast steering mirror and high efficiency driver,” Proc. 52nd Space Science and Technology Conference, 487–490, (2008).
  13. M. Toyoshima, H. Takenaka, and Y. Takayama, “Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links,” Opt. Express19(17), 15965–15975 (2011).
    [CrossRef] [PubMed]

2011

M. Toyoshima, H. Takenaka, and Y. Takayama, “Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links,” Opt. Express19(17), 15965–15975 (2011).
[CrossRef] [PubMed]

2009

Y. Koyama, Y. Takayama, and H. Kunimori, “Optical fiber amplifiers for space environments,” Int. Conf. Struct. Surf.2009(37), 221–225 (2009).

2008

F. Fidler and O. Wallner, “Application of single-mode fiber-coupled receivers in optical satellite to high-altitude platform communications,” EURASIP J. Wirel. Commun. Netw.2008, 864031 (2008).

2007

T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).

2006

M. Toyoshima, “Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications,” J. Opt. Soc. Am. A23(9), 2246–2250 (2006).
[CrossRef] [PubMed]

2005

Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt.44(23), 4946–4952 (2005).
[CrossRef] [PubMed]

M. Toyoshima, “Trends in satellite communications and the role of optical free-space communications [Invited],” J. Opt. Netw.4(6), 300–311 (2005).
[CrossRef]

2003

V. W. S. Chan, “Optical satellite networks,” J. Lightwave Technol.21(11), 2811–2827 (2003).
[CrossRef]

2002

J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A19(9), 1794–1802 (2002).
[CrossRef] [PubMed]

1995

L. C. Andrews, R. L. Phillips, and P. T. Yu, “Optical scintillations and fade statistics for a satellite-communication system,” Appl. Opt.34(33), 7742–7751 (1995).
[CrossRef] [PubMed]

1991

J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt.30(15), 1982–1994 (1991).
[CrossRef] [PubMed]

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and P. T. Yu, “Optical scintillations and fade statistics for a satellite-communication system,” Appl. Opt.34(33), 7742–7751 (1995).
[CrossRef] [PubMed]

Arai, K.

T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).

Chan, V. W. S.

V. W. S. Chan, “Optical satellite networks,” J. Lightwave Technol.21(11), 2811–2827 (2003).
[CrossRef]

Churnside, J. H.

J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt.30(15), 1982–1994 (1991).
[CrossRef] [PubMed]

Davidson, F. M.

Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt.44(23), 4946–4952 (2005).
[CrossRef] [PubMed]

J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A19(9), 1794–1802 (2002).
[CrossRef] [PubMed]

Demelenne, B.

T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).

Dikmelik, Y.

Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt.44(23), 4946–4952 (2005).
[CrossRef] [PubMed]

Fidler, F.

F. Fidler and O. Wallner, “Application of single-mode fiber-coupled receivers in optical satellite to high-altitude platform communications,” EURASIP J. Wirel. Commun. Netw.2008, 864031 (2008).

Giggenbach, D.

T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).

Jono, T.

T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).

Koyama, Y.

Y. Koyama, Y. Takayama, and H. Kunimori, “Optical fiber amplifiers for space environments,” Int. Conf. Struct. Surf.2009(37), 221–225 (2009).

Kunimori, H.

Y. Koyama, Y. Takayama, and H. Kunimori, “Optical fiber amplifiers for space environments,” Int. Conf. Struct. Surf.2009(37), 221–225 (2009).

Mase, I.

T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and P. T. Yu, “Optical scintillations and fade statistics for a satellite-communication system,” Appl. Opt.34(33), 7742–7751 (1995).
[CrossRef] [PubMed]

Ricklin, J. C.

J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A19(9), 1794–1802 (2002).
[CrossRef] [PubMed]

Shiratama, K.

T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).

Takayama, Y.

M. Toyoshima, H. Takenaka, and Y. Takayama, “Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links,” Opt. Express19(17), 15965–15975 (2011).
[CrossRef] [PubMed]

Y. Koyama, Y. Takayama, and H. Kunimori, “Optical fiber amplifiers for space environments,” Int. Conf. Struct. Surf.2009(37), 221–225 (2009).

T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).

Takenaka, H.

M. Toyoshima, H. Takenaka, and Y. Takayama, “Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links,” Opt. Express19(17), 15965–15975 (2011).
[CrossRef] [PubMed]

Toyoshima, M.

M. Toyoshima, H. Takenaka, and Y. Takayama, “Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links,” Opt. Express19(17), 15965–15975 (2011).
[CrossRef] [PubMed]

T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).

M. Toyoshima, “Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications,” J. Opt. Soc. Am. A23(9), 2246–2250 (2006).
[CrossRef] [PubMed]

M. Toyoshima, “Trends in satellite communications and the role of optical free-space communications [Invited],” J. Opt. Netw.4(6), 300–311 (2005).
[CrossRef]

Wallner, O.

F. Fidler and O. Wallner, “Application of single-mode fiber-coupled receivers in optical satellite to high-altitude platform communications,” EURASIP J. Wirel. Commun. Netw.2008, 864031 (2008).

Yu, P. T.

L. C. Andrews, R. L. Phillips, and P. T. Yu, “Optical scintillations and fade statistics for a satellite-communication system,” Appl. Opt.34(33), 7742–7751 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt.44(23), 4946–4952 (2005).
[CrossRef] [PubMed]

J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt.30(15), 1982–1994 (1991).
[CrossRef] [PubMed]

L. C. Andrews, R. L. Phillips, and P. T. Yu, “Optical scintillations and fade statistics for a satellite-communication system,” Appl. Opt.34(33), 7742–7751 (1995).
[CrossRef] [PubMed]

EURASIP J. Wirel. Commun. Netw.

F. Fidler and O. Wallner, “Application of single-mode fiber-coupled receivers in optical satellite to high-altitude platform communications,” EURASIP J. Wirel. Commun. Netw.2008, 864031 (2008).

Int. Conf. Struct. Surf.

Y. Koyama, Y. Takayama, and H. Kunimori, “Optical fiber amplifiers for space environments,” Int. Conf. Struct. Surf.2009(37), 221–225 (2009).

J. Lightwave Technol.

V. W. S. Chan, “Optical satellite networks,” J. Lightwave Technol.21(11), 2811–2827 (2003).
[CrossRef]

J. Opt. Netw.

M. Toyoshima, “Trends in satellite communications and the role of optical free-space communications [Invited],” J. Opt. Netw.4(6), 300–311 (2005).
[CrossRef]

J. Opt. Soc. Am. A

J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A19(9), 1794–1802 (2002).
[CrossRef] [PubMed]

M. Toyoshima, “Maximum fiber coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications,” J. Opt. Soc. Am. A23(9), 2246–2250 (2006).
[CrossRef] [PubMed]

Opt. Express

M. Toyoshima, H. Takenaka, and Y. Takayama, “Atmospheric turbulence-induced fading channel model for space-to-ground laser communications links,” Opt. Express19(17), 15965–15975 (2011).
[CrossRef] [PubMed]

Proc. SPIE

T. Jono, Y. Takayama, K. Arai, K. Shiratama, I. Mase, B. Demelenne, M. Toyoshima, and D. Giggenbach, “Overview of the inter-orbit and the orbit-to-ground lasercom demonstration by OICETS,” Proc. SPIE6457(645702), 1–10 (2007).

Other

M. Toyoshima, Y. Takayama, H. Kunimori, and T. Jono, “Probability density function of the atmospheric turbulence-induced signal fluctuation in a ground-to-low earth orbit optical communication link,” Proc. 25th LSS, 30–36, (2007).

T. Abe, T. Kizaki, H. Kunimori, Y. Takayama, and M. Toyoshima, “The development of two-axes fast steering mirror and high efficiency driver,” Proc. 52nd Space Science and Technology Conference, 487–490, (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cn2 profile associated with the H–V model as a function of the altitude, where A = 1.2 × 10−13 m−2/3 and h0 = 122 m.

Fig. 2
Fig. 2

Fiber coupling efficiency as a function of A for Cn2 and λ = 0.850, 1.060, 1.330, and 1.550 μm, where L = 1000 km, DR = 0.318 m, Wm = 5.2 μm, λ = 0.850 μm, v = 21 m/s, h0 = 122 m and f = 0.1.

Fig. 3
Fig. 3

Fiber coupling efficiency as a function of the communication link distance for λ = 0.850, 1.060, 1.330, and 1.550 μm.;where DR = 0.318 m, Wm = 5.2 μm, f = 0.1 m, A = 1.2 × 10−13 m−2/3, ζ = 58°, v = 21 m/s and h0 = 122 m.

Fig. 4
Fig. 4

Experimental setup for laser communication between optical ground station and satellite.

Fig. 5
Fig. 5

Photograph of the FSM at experiment.

Fig. 6
Fig. 6

Configuration of the fine tracking system from telescope to optical bench.

Fig. 7
Fig. 7

Fiber coupling loss level (ηl) as a function of time.

Tables (2)

Tables Icon

Table 1 FSM specifications [12]

Tables Icon

Table 2 Parameters used in Eq. (9)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

η c =8 a 2 0 1 0 1 exp[ ( a 2 + A R A c )( x 1 2 + x 2 2 ) ] × I 0 ( 2 A R A c x 1 x 2 ) x 1 x 2 d x 1 d x 2 ,
a= D R 2 π W m λf ,
A c =π ρ c 2 ,
A R =π D R 2 /4,
ρ c = ( 1.46 C n 2 k 2 L ) 3/5 .
ρ s = [ 1.46 k 2 1 cos( ζ ) h 0 H dz C n 2 (h) ] 3/5 ,
H= h 0 +Lcos(ζ), C n 2 (h)=0.00594 ( v/27 ) 2 ( 10 5 h ) 10 exp( h 1000 )
+2.7× 10 16 exp( h 1500 )+Aexp( h 100 ).
A s =π ρ s 2 .

Metrics