Abstract

A mobile Rayleigh Doppler lidar based on double-edge technique is developed for mid-altitude wind observation. To reduce the systematic error, a system-level optical frequency control method is proposed and demonstrated. The emission of the seed laser at 1064 nm is used to synchronize the FPI in the optical frequency domain. A servo loop stabilizing the frequency of the seed laser is formed by measuring the absolute frequency of the second harmonic against an iodine absorption line. And, the third harmonic is used for Rayleigh lidar detection. The frequency stability is 1.6 MHz at 1064 nm over 2 minutes. A locking accuracy of 0.3 MHz at 1064 nm is realized. In comparison experiments, wind profiles from the lidar, radiosonde and European Center for Medium range Weather Forecast (ECMWF) analysis show good agreement from 8 km to 25 km. Wind observation over two months is carried out in Urumqi (42.1°N,87.1°E), northwest of China, demonstrating the stability and robustness of the system. For the first time, quasi-zero wind layer and dynamic evolution of high-altitude tropospheric jet are observed based on Rayleigh Doppler lidar in Asia.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
    [CrossRef]
  2. P. Hays, M. Dehring, L. Fisk, P. Tchoryk, I. Dors, J. Ryan, J. Wang, M. Hardesty, B. Gentry, and F. Hovis, “Space-based Doppler winds lidar: a vital national need,” In response to national research council (NRC) decadal study request for information (RFI), May (2005).
  3. European Space Agency ESA, ADM-Aeolus science report: ESA SP-1311 (ESA Communication Production Office, 2008).
  4. R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
    [CrossRef]
  5. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120–7131 (2007).
    [CrossRef] [PubMed]
  6. C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt. 37(15), 3097–3104 (1998).
    [CrossRef] [PubMed]
  7. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38(3), 432–440 (1999).
    [CrossRef] [PubMed]
  8. Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41(33), 7079–7086 (2002).
    [CrossRef] [PubMed]
  9. J. A. McKay, “Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar,” Appl. Opt. 41(9), 1760–1767 (2002).
    [CrossRef] [PubMed]
  10. D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a Fabry-Perot interferometer,” Appl. Opt. 43(1), 173–182 (2004).
    [CrossRef] [PubMed]
  11. N. Cézard, A. Dolfi-Bouteyre, J. P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar,” Appl. Opt. 48(12), 2321–2332 (2009).
    [CrossRef] [PubMed]
  12. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
    [CrossRef]
  13. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
    [CrossRef]
  14. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
    [CrossRef]
  15. A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
    [CrossRef]
  16. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
    [CrossRef] [PubMed]
  17. C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38(12), 2422–2431 (1999).
    [CrossRef] [PubMed]
  18. C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
    [CrossRef]
  19. J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22(21), 1648–1650 (1997).
    [CrossRef] [PubMed]
  20. D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
    [CrossRef]
  21. U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).
  22. G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. Discuss. 3(6), 1509–1518 (2010).
    [CrossRef]
  23. W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34(10), 1552–1554 (2009).
    [PubMed]
  24. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355-nm molecular Doppler lidar,” Opt. Lett. 25(17), 1231–1233 (2000).
    [CrossRef] [PubMed]
  25. F. Shen, H. Hyunki Cha, J. Dong, D. Kim, D. Sun, and S. O. Kwon, “Design and performance simulation of a molecular Doppler wind lidar,” Chin. Opt. Lett. 7(7), 593–597 (2009).
    [CrossRef]
  26. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
    [CrossRef]
  27. K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).
  28. F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
    [CrossRef]
  29. H. Xia and J. Yao, “Characterization of sub-picosecond pulses based on temporal interferometry with real-time tracking of higher-order dispersion and optical time delay,” J. Lightwave Technol. 27(22), 5029–5037 (2009).
    [CrossRef]
  30. M. S. Fee, K. Danzmann, and S. Chu, “Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy,” Phys. Rev. A 45(7), 4911–4924 (1992).
    [CrossRef] [PubMed]
  31. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96(1), 201–213 (2009).
    [CrossRef]
  32. L. A. Rahn, “Feedback stabilization of an injection-seeded Nd: YAG laser,” Appl. Opt. 24(7), 940–942 (1985).
    [CrossRef] [PubMed]
  33. F. T. S. Yu and S. Yin, Fiber Optic Sensors (Marcel Dekker, Inc., New York, 2002), Chap. 5.3.1.
  34. A. T. Young and G. W. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22(23), 3668–3670 (1983).
    [CrossRef] [PubMed]
  35. A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60(2), 206–215 (2008).
    [CrossRef]
  36. M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc. 133(622), 107–116 (2007).
    [CrossRef]
  37. M. Weissmann, R. H. Langland, P. M. Pauley, S. Rahm, and C. Cardinali, “Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts,” Q. J. R. Meteorol. Soc. 138, 118–130 (2011).
    [CrossRef]
  38. K. Mohanakumar, Stratosphere Troposphere Interactions: An Introduction (Springer Science, 2008), Chap.1.
  39. H. Xia and C. Zhang, “Ultrafast ranging lidar based on real-time Fourier transformation,” Opt. Lett. 34(14), 2108–2110 (2009).
    [CrossRef] [PubMed]
  40. H. Xia and C. Zhang, “Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry,” Opt. Express 18(5), 4118–4129 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4118 .
    [CrossRef] [PubMed]

2011 (1)

M. Weissmann, R. H. Langland, P. M. Pauley, S. Rahm, and C. Cardinali, “Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts,” Q. J. R. Meteorol. Soc. 138, 118–130 (2011).
[CrossRef]

2010 (2)

G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. Discuss. 3(6), 1509–1518 (2010).
[CrossRef]

H. Xia and C. Zhang, “Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry,” Opt. Express 18(5), 4118–4129 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-4118 .
[CrossRef] [PubMed]

2009 (8)

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34(10), 1552–1554 (2009).
[PubMed]

F. Shen, H. Hyunki Cha, J. Dong, D. Kim, D. Sun, and S. O. Kwon, “Design and performance simulation of a molecular Doppler wind lidar,” Chin. Opt. Lett. 7(7), 593–597 (2009).
[CrossRef]

H. Xia and C. Zhang, “Ultrafast ranging lidar based on real-time Fourier transformation,” Opt. Lett. 34(14), 2108–2110 (2009).
[CrossRef] [PubMed]

H. Xia and J. Yao, “Characterization of sub-picosecond pulses based on temporal interferometry with real-time tracking of higher-order dispersion and optical time delay,” J. Lightwave Technol. 27(22), 5029–5037 (2009).
[CrossRef]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96(1), 201–213 (2009).
[CrossRef]

N. Cézard, A. Dolfi-Bouteyre, J. P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar,” Appl. Opt. 48(12), 2321–2332 (2009).
[CrossRef] [PubMed]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

2008 (1)

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60(2), 206–215 (2008).
[CrossRef]

2007 (4)

M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc. 133(622), 107–116 (2007).
[CrossRef]

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120–7131 (2007).
[CrossRef] [PubMed]

2005 (1)

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

2004 (2)

D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a Fabry-Perot interferometer,” Appl. Opt. 43(1), 173–182 (2004).
[CrossRef] [PubMed]

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

2002 (2)

2000 (2)

B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355-nm molecular Doppler lidar,” Opt. Lett. 25(17), 1231–1233 (2000).
[CrossRef] [PubMed]

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

1999 (3)

1998 (1)

1997 (1)

1996 (2)

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[CrossRef]

1994 (1)

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
[CrossRef]

1992 (2)

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[CrossRef]

M. S. Fee, K. Danzmann, and S. Chu, “Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy,” Phys. Rev. A 45(7), 4911–4924 (1992).
[CrossRef] [PubMed]

1989 (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[CrossRef]

1985 (1)

1983 (1)

Adolfsen, K.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Andersson, E.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Baumgarten, G.

G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. Discuss. 3(6), 1509–1518 (2010).
[CrossRef]

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Bruneau, D.

Burnham, R. L.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

Cardinali, C.

M. Weissmann, R. H. Langland, P. M. Pauley, S. Rahm, and C. Cardinali, “Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts,” Q. J. R. Meteorol. Soc. 138, 118–130 (2011).
[CrossRef]

M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc. 133(622), 107–116 (2007).
[CrossRef]

Castleberg, P. A.

Cézard, N.

Chaloupy, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

Chanin, M. L.

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[CrossRef]

Chaxell, Y.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

Chen, H.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355-nm molecular Doppler lidar,” Opt. Lett. 25(17), 1231–1233 (2000).
[CrossRef] [PubMed]

Chen, W. B.

Chu, S.

M. S. Fee, K. Danzmann, and S. Chu, “Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy,” Phys. Rev. A 45(7), 4911–4924 (1992).
[CrossRef] [PubMed]

Chu, X.

Cook, A. L.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

Culoma, A.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Dabas, A.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60(2), 206–215 (2008).
[CrossRef]

Danzmann, K.

M. S. Fee, K. Danzmann, and S. Chu, “Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy,” Phys. Rev. A 45(7), 4911–4924 (1992).
[CrossRef] [PubMed]

Denneulin, M.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60(2), 206–215 (2008).
[CrossRef]

Dolfi-Bouteyre, A.

N. Cézard, A. Dolfi-Bouteyre, J. P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar,” Appl. Opt. 48(12), 2321–2332 (2009).
[CrossRef] [PubMed]

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60(2), 206–215 (2008).
[CrossRef]

Dong, J.

Durand, Y.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

Ehret, G.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96(1), 201–213 (2009).
[CrossRef]

Endemann, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Fabre, F.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

Fee, M. S.

M. S. Fee, K. Danzmann, and S. Chu, “Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy,” Phys. Rev. A 45(7), 4911–4924 (1992).
[CrossRef] [PubMed]

Fiedler, J.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Fix, A.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96(1), 201–213 (2009).
[CrossRef]

Flamant, P.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60(2), 206–215 (2008).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Flamant, P. H.

Flesia, C.

Force, J. D.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

Freudenthaler, V.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

Fricke, K. H.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Friedman, J. S.

Garnier, A.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60(2), 206–215 (2008).
[CrossRef]

D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a Fabry-Perot interferometer,” Appl. Opt. 43(1), 173–182 (2004).
[CrossRef] [PubMed]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
[CrossRef] [PubMed]

C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38(12), 2422–2431 (1999).
[CrossRef] [PubMed]

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[CrossRef]

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[CrossRef]

Gentry, B. M.

Griffin, E.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

Hair, J. W.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41(33), 7079–7086 (2002).
[CrossRef] [PubMed]

Hardesty, R. M.

Harrell, S. D.

Hauchecorne, A.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
[CrossRef] [PubMed]

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[CrossRef]

Hertzog, A.

Hoefer, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

Hoffmann, D.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

Höffner, J.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

Hostetler, C. A.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

Hovis, F. E.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

Huang, W.

Huffaker, R. M.

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[CrossRef]

Huignard, J. P.

Hyunki Cha, H.

Ingmann, P.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Isaksen, L.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Källen, E.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Kattawar, G. W.

Kim, D.

Kobayashi, T.

Korb, C. L.

Kwon, S. O.

Langland, R. H.

M. Weissmann, R. H. Langland, P. M. Pauley, S. Rahm, and C. Cardinali, “Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts,” Q. J. R. Meteorol. Soc. 138, 118–130 (2011).
[CrossRef]

Lemmerz, C.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

Li, S. X.

Liu, J. T.

Liu, Z. S.

Loth, C.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60(2), 206–215 (2008).
[CrossRef]

Luttmann, J.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

Mahnke, P.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96(1), 201–213 (2009).
[CrossRef]

McKay, J. A.

Meredith, N. P.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

Meynart, R.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Morasch, V.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

Nelke, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Nicklaus, K.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

Nikolaus, I.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

Ostermeyer, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

Paffrath, U.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

Pailleux, J.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Pauley, P. M.

M. Weissmann, R. H. Langland, P. M. Pauley, S. Rahm, and C. Cardinali, “Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts,” Q. J. R. Meteorol. Soc. 138, 118–130 (2011).
[CrossRef]

Porteneuve, J.

Rahm, S.

M. Weissmann, R. H. Langland, P. M. Pauley, S. Rahm, and C. Cardinali, “Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts,” Q. J. R. Meteorol. Soc. 138, 118–130 (2011).
[CrossRef]

Rahn, L. A.

Rees, D.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

Reitebuch, O.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Rhoades, M.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

Roe, H.

Schrandt, F.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96(1), 201–213 (2009).
[CrossRef]

Schröder, T.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Schum, T.

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

Schwarzer, H.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96(1), 201–213 (2009).
[CrossRef]

Schyberg, H.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

She, C. Y.

She, C.-Y.

Shen, F.

Song, X. Q.

Souprayen, C.

Stoffelen, A.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Sun, D.

Tan, B.

Tepley, C. A.

J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe, “Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,” Opt. Lett. 22(21), 1648–1650 (1997).
[CrossRef] [PubMed]

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
[CrossRef]

Treichel, R.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Vaughan, J. M.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Vierkötter, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

von Cossart, G.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

von Zahn, U.

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Vyssogorets, M.

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

Weissmann, M.

M. Weissmann, R. H. Langland, P. M. Pauley, S. Rahm, and C. Cardinali, “Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts,” Q. J. R. Meteorol. Soc. 138, 118–130 (2011).
[CrossRef]

M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc. 133(622), 107–116 (2007).
[CrossRef]

Wergen, W.

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Wiig, J.

Williams, B. P.

Wirth, M.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96(1), 201–213 (2009).
[CrossRef]

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Witschas, B.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

Wu, D.

Wührer, C.

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Xia, H.

Yamashita, C.

Yang, Y.

Yao, J.

Young, A. T.

Yuan, T.

Yue, J.

Zhang, C.

Zhang, K. L.

Ann. Geophys. (1)

U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, “The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance,” Ann. Geophys. 18, 815–833 (2000).

Appl. Opt. (11)

L. A. Rahn, “Feedback stabilization of an injection-seeded Nd: YAG laser,” Appl. Opt. 24(7), 940–942 (1985).
[CrossRef] [PubMed]

A. T. Young and G. W. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22(23), 3668–3670 (1983).
[CrossRef] [PubMed]

H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120–7131 (2007).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, “Theory of the double-edge technique for Doppler lidar wind measurement,” Appl. Opt. 37(15), 3097–3104 (1998).
[CrossRef] [PubMed]

C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38(3), 432–440 (1999).
[CrossRef] [PubMed]

Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, X. Q. Song, J. W. Hair, and C. Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41(33), 7079–7086 (2002).
[CrossRef] [PubMed]

J. A. McKay, “Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar,” Appl. Opt. 41(9), 1760–1767 (2002).
[CrossRef] [PubMed]

D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a Fabry-Perot interferometer,” Appl. Opt. 43(1), 173–182 (2004).
[CrossRef] [PubMed]

N. Cézard, A. Dolfi-Bouteyre, J. P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar,” Appl. Opt. 48(12), 2321–2332 (2009).
[CrossRef] [PubMed]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
[CrossRef] [PubMed]

C. Souprayen, A. Garnier, and A. Hertzog, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration,” Appl. Opt. 38(12), 2422–2431 (1999).
[CrossRef] [PubMed]

Appl. Phys. B (3)

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B 96(1), 201–213 (2009).
[CrossRef]

A. Garnier and M. L. Chanin, “Description of a Doppler Rayleigh LIDAR for measuring winds in the middle atmosphere,” Appl. Phys. B 55(1), 35–40 (1992).
[CrossRef]

T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, and R. Treichel, “Frequency jitter and spectral width of an injection-seeded Q-switched Nd:YAG laser for a Doppler wind lidar,” Appl. Phys. B 87(3), 437–444 (2007).
[CrossRef]

Atmos. Meas. Tech. Discuss. (1)

G. Baumgarten, “Doppler Rayleigh Mie Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km,” Atmos. Meas. Tech. Discuss. 3(6), 1509–1518 (2010).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

A. Stoffelen, J. Pailleux, E. Källen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–87 (2005).
[CrossRef]

Chin. Opt. Lett. (1)

Geophys. Res. Lett. (1)

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16(11), 1273–1276 (1989).
[CrossRef]

J. Atmos. Ocean. Technol. (2)

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance,” J. Atmos. Ocean. Technol. 26(12), 2516–2530 (2009).
[CrossRef]

J. Atmos. Sol. Terr. Phys. (1)

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, “The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results,” J. Atmos. Sol. Terr. Phys. 58(16), 1827–1842 (1996).
[CrossRef]

J. Geophys. Res. (1)

C. A. Tepley, “Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar,” J. Geophys. Res. 99(D12), 25781–25790 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

M. S. Fee, K. Danzmann, and S. Chu, “Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy,” Phys. Rev. A 45(7), 4911–4924 (1992).
[CrossRef] [PubMed]

Proc. IEEE (1)

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84(2), 181–204 (1996).
[CrossRef]

Proc. SPIE (2)

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 1–12 (2007).

F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263–270 (2004).
[CrossRef]

Q. J. R. Meteorol. Soc. (2)

M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc. 133(622), 107–116 (2007).
[CrossRef]

M. Weissmann, R. H. Langland, P. M. Pauley, S. Rahm, and C. Cardinali, “Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts,” Q. J. R. Meteorol. Soc. 138, 118–130 (2011).
[CrossRef]

Tellus A (1)

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus A 60(2), 206–215 (2008).
[CrossRef]

Other (4)

F. T. S. Yu and S. Yin, Fiber Optic Sensors (Marcel Dekker, Inc., New York, 2002), Chap. 5.3.1.

P. Hays, M. Dehring, L. Fisk, P. Tchoryk, I. Dors, J. Ryan, J. Wang, M. Hardesty, B. Gentry, and F. Hovis, “Space-based Doppler winds lidar: a vital national need,” In response to national research council (NRC) decadal study request for information (RFI), May (2005).

European Space Agency ESA, ADM-Aeolus science report: ESA SP-1311 (ESA Communication Production Office, 2008).

K. Mohanakumar, Stratosphere Troposphere Interactions: An Introduction (Springer Science, 2008), Chap.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Principle of the double-edge technique adopted in the Rayleigh Doppler wind lidar. The spectrum of backscattering is assumed to be the superimposition of Mie and Rayleigh spectrums. The impact of Brillouin backscattering is not considered in this figure. (a) Without Doppler shift ( υ D =0 MHz ). (b) With Doppler shift ( υ D =400 MHz ). υ D is the Doppler shift carried on the atmosphere backscattering.

Fig. 2
Fig. 2

Schematic diagram of the Rayleigh Doppler Lidar with system-level optical frequency control, and interior view of the compact receiver (inset, lower right corner).

Fig. 3
Fig. 3

Frequency stability of the seed laser. (a) A heterodyne signal and its FFT spectrum (inset, upper right corner). (b) Frequency centroid measured over 2 minutes and its histogram distribution (inset, upper right corner).

Fig. 4
Fig. 4

(a) Measured transmission curves of the FPI. Solid lines are the Gaussian fit results. (b) Residual frequency drift of 532 nm pulse train. (c) Frequency locking accuracy of the FPI to the seed laser.

Fig. 5
Fig. 5

The USTC Rayleigh Doppler lidar in experiment

Fig. 6
Fig. 6

Profiles of backscattered signals on the two edge channels ( N 1 , N 2 ) and on the energy monitoring channel ( N e ). The height resolution is changed from 100 m (a) to 500 m (b) above 20 km.

Fig. 7
Fig. 7

Profiles of wind speed and direction measured by the Rayleigh Doppler lidar (solid line) compared with data measured by radiosonde (dashed line) and data from ECMWF (filled circle). In the altitude range where wind velocity is below the measurement error, wind direction from the lidar has no meaning, and its error bars are not plotted.

Fig. 8
Fig. 8

Time-altitude plot of temperature detected using radiosonde. The tropopause is shown (dashed line with circles).

Fig. 9
Fig. 9

Statistics of the difference in wind measurements between the lidar and radiosonde (red lines are the Gaussian fit results to the data): (a) and (b) are histogram distributions of velocity difference and direction difference from 8 km to tropopause, (c) and (d) are histogram distributions of velocity difference and direction difference from tropopause to 20 km.

Fig. 10
Fig. 10

Time-altitude plot of semi-continuous observation of mid-altitude wind field in September and October, 2011. Local midnights are tagged. Time scale is plotted in the lower left corner. The altitude of the tropopause is shown (dashed line with circles) for reference. The data with velocity error larger than 10 m/s are not plotted. The wind direction in the quasi-zero wind layer has no meaning, since the error of velocity measurement is larger than the wind velocity. The minimum velocity error and the minimum direction error in this experiment are estimated to be 0.86 m/s and 3.6° , respectively.

Tables (1)

Tables Icon

Table 1 Key parameters of the mobile Rayleigh Doppler Lidar

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R( υ D )= [ N 1 ( υ D ) N 2 ( υ D ) ] / [ N 1 ( υ D )+ N 2 ( υ D ) ] .
N i ( υ D )= a i + T i ( υ )I( υ υ D )dυ,
T( υ )=B+ T p { 1+2 n=1 M R e n cos[ 2πn( υ υ c ) υ FSR 1+cos θ 0 2 ]sinc( 2n υ 0 υ FSR 1cos θ 0 2 ) . exp[ ( πnΔ υ L υ FSR 1+cos θ 0 2 ) 2 ] }
V LOS = υ D λ /2 .

Metrics