Abstract

We theoretically and experimentally investigate the conditions necessary to realize highly indistinguishable single-photon sources using parametric down conversion. The visibilities of Hong–Ou–Mandel (HOM) interference between photons in different fluorescence pairs were measured and a visibility of 95.8 ± 2% was observed using a 0.7-mm-long beta barium borate crystal and 2-nm bandpass filters, after compensating for the reflectivity of the beam splitter. A theoretical model of HOM interference visibilities is proposed that considers non-uniform down conversion process inside the nonlinear crystal. It well explains the experimental results.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers Systems and Signal Processing175–179 (1984).
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, England, 2000).
  3. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
    [CrossRef] [PubMed]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
    [CrossRef]
  5. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [CrossRef] [PubMed]
  6. T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, “Linear optical controlled-NOT gate in the coincidence basis,” Phys. Rev. A 65, 062324 (2002).
    [CrossRef]
  7. H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A 66, 024308 (2002).
    [CrossRef]
  8. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature (London) 426, 264–267 (2003).
    [CrossRef]
  9. N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
    [CrossRef] [PubMed]
  10. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
    [CrossRef] [PubMed]
  11. R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
    [CrossRef] [PubMed]
  12. R. Okamoto, J. L. O’Brien, H. F. Hoffman, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science 323, 483–485 (2009).
    [CrossRef] [PubMed]
  13. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
    [CrossRef]
  14. R. Okamoto, J. L. O’Brien, H. F. Hofmann, and S. Takeuchi, “Realization of a Knill-Laflamme-Milburn C-NOT gate a photonic quantum circuit combining effective optical nonlinearities,” Proc. Natl. Acad. Sci. USA 108, 10067–10071 (2011).
    [CrossRef] [PubMed]
  15. H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
    [CrossRef]
  16. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
    [CrossRef] [PubMed]
  17. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
    [CrossRef] [PubMed]
  18. Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express 15, 14244–14250 (2007).
    [CrossRef] [PubMed]
  19. T. Nagata, R. Okamoto, H. F. Hofmann, and S. Takeuchi, “Analysis of experimental error sources in a linear-optics quantum gate,” New J. Phys. 12, 043053 (2010).
    [CrossRef]
  20. T. Jennewein, R. Ursin, M. Aspelmeyer, and A. Zeilinger, “Performing high-quality multi-photon experiments with parametric down-conversion,” J. Phys. B 42, 114008 (2009).
    [CrossRef]
  21. P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
    [CrossRef]
  22. H. R. Zhang and R. P. Wang, “Theory of fourfold interference with photon pairs from spatially separated sources,” Phys. Rev. A 75, 053804 (2007).
    [CrossRef]
  23. M. Barbieri, “Effects of frequency correlation in linear optical entangling gates operated with independent photons,” Phys. Rev. A 76, 043825 (2007).
    [CrossRef]
  24. R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302(R) (2009).
    [CrossRef]
  25. M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling independent pulsed photon sources,” Ann. N.Y. Acad. Sci. 755, 91–102 (1995).
    [CrossRef]
  26. R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 240502 (2006).
    [CrossRef] [PubMed]
  27. R. Kaltenbaek, 2008 PhD Thesis.
  28. S. M. Saltiel, K. Koynov, B. Agate, and W. Sibbett, “Second-harmonic generation with focused beams under conditions of large group-velocity mismatch,” J. Opt. Soc. Am. B 21, 591–598 (2004).
    [CrossRef]
  29. Y. Kawabe, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Investigation of the spatial propagation properties of type-I parametric fluorescence by use of tuning curve filtering method,” Jpn. J. Appl. Phys. 46, 5802–5808 (2007).
    [CrossRef]

2011 (1)

R. Okamoto, J. L. O’Brien, H. F. Hofmann, and S. Takeuchi, “Realization of a Knill-Laflamme-Milburn C-NOT gate a photonic quantum circuit combining effective optical nonlinearities,” Proc. Natl. Acad. Sci. USA 108, 10067–10071 (2011).
[CrossRef] [PubMed]

2010 (1)

T. Nagata, R. Okamoto, H. F. Hofmann, and S. Takeuchi, “Analysis of experimental error sources in a linear-optics quantum gate,” New J. Phys. 12, 043053 (2010).
[CrossRef]

2009 (4)

T. Jennewein, R. Ursin, M. Aspelmeyer, and A. Zeilinger, “Performing high-quality multi-photon experiments with parametric down-conversion,” J. Phys. B 42, 114008 (2009).
[CrossRef]

R. Okamoto, J. L. O’Brien, H. F. Hoffman, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science 323, 483–485 (2009).
[CrossRef] [PubMed]

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302(R) (2009).
[CrossRef]

2007 (5)

H. R. Zhang and R. P. Wang, “Theory of fourfold interference with photon pairs from spatially separated sources,” Phys. Rev. A 75, 053804 (2007).
[CrossRef]

M. Barbieri, “Effects of frequency correlation in linear optical entangling gates operated with independent photons,” Phys. Rev. A 76, 043825 (2007).
[CrossRef]

Y. Kawabe, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Investigation of the spatial propagation properties of type-I parametric fluorescence by use of tuning curve filtering method,” Jpn. J. Appl. Phys. 46, 5802–5808 (2007).
[CrossRef]

Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express 15, 14244–14250 (2007).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[CrossRef] [PubMed]

2006 (1)

R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 240502 (2006).
[CrossRef] [PubMed]

2005 (3)

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[CrossRef] [PubMed]

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[CrossRef] [PubMed]

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature (London) 426, 264–267 (2003).
[CrossRef]

2002 (3)

H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
[CrossRef]

T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, “Linear optical controlled-NOT gate in the coincidence basis,” Phys. Rev. A 65, 062324 (2002).
[CrossRef]

H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A 66, 024308 (2002).
[CrossRef]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

2000 (1)

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

1998 (1)

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[CrossRef]

1995 (1)

M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling independent pulsed photon sources,” Ann. N.Y. Acad. Sci. 755, 91–102 (1995).
[CrossRef]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Abrams, D. S.

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Agate, B.

Almeida, M. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

Aspelmeyer, M.

T. Jennewein, R. Ursin, M. Aspelmeyer, and A. Zeilinger, “Performing high-quality multi-photon experiments with parametric down-conversion,” J. Phys. B 42, 114008 (2009).
[CrossRef]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302(R) (2009).
[CrossRef]

R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 240502 (2006).
[CrossRef] [PubMed]

Barbieri, M.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

M. Barbieri, “Effects of frequency correlation in linear optical entangling gates operated with independent photons,” Phys. Rev. A 76, 043825 (2007).
[CrossRef]

Bell, T. B.

T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, “Linear optical controlled-NOT gate in the coincidence basis,” Phys. Rev. A 65, 062324 (2002).
[CrossRef]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers Systems and Signal Processing175–179 (1984).

Blauensteiner, B.

R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 240502 (2006).
[CrossRef] [PubMed]

Boto, N.

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Branning, D.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature (London) 426, 264–267 (2003).
[CrossRef]

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers Systems and Signal Processing175–179 (1984).

Braunstein, S. L.

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, England, 2000).

Dowling, J. P.

H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
[CrossRef]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Fujiwara, H.

Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express 15, 14244–14250 (2007).
[CrossRef] [PubMed]

Y. Kawabe, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Investigation of the spatial propagation properties of type-I parametric fluorescence by use of tuning curve filtering method,” Jpn. J. Appl. Phys. 46, 5802–5808 (2007).
[CrossRef]

Gilchrist, A.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[CrossRef] [PubMed]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[CrossRef] [PubMed]

Hoffman, H. F.

R. Okamoto, J. L. O’Brien, H. F. Hoffman, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science 323, 483–485 (2009).
[CrossRef] [PubMed]

Hofmann, H. F.

R. Okamoto, J. L. O’Brien, H. F. Hofmann, and S. Takeuchi, “Realization of a Knill-Laflamme-Milburn C-NOT gate a photonic quantum circuit combining effective optical nonlinearities,” Proc. Natl. Acad. Sci. USA 108, 10067–10071 (2011).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, H. F. Hofmann, and S. Takeuchi, “Analysis of experimental error sources in a linear-optics quantum gate,” New J. Phys. 12, 043053 (2010).
[CrossRef]

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[CrossRef] [PubMed]

H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A 66, 024308 (2002).
[CrossRef]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Jennewein, T.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

T. Jennewein, R. Ursin, M. Aspelmeyer, and A. Zeilinger, “Performing high-quality multi-photon experiments with parametric down-conversion,” J. Phys. B 42, 114008 (2009).
[CrossRef]

Kaltenbaek, R.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302(R) (2009).
[CrossRef]

R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 240502 (2006).
[CrossRef] [PubMed]

R. Kaltenbaek, 2008 PhD Thesis.

Kawabe, Y.

Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express 15, 14244–14250 (2007).
[CrossRef] [PubMed]

Y. Kawabe, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Investigation of the spatial propagation properties of type-I parametric fluorescence by use of tuning curve filtering method,” Jpn. J. Appl. Phys. 46, 5802–5808 (2007).
[CrossRef]

Kiesel, N.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[CrossRef] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

Kok, P.

H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
[CrossRef]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Koynov, K.

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

Langford, N. K.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[CrossRef] [PubMed]

T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, “Linear optical controlled-NOT gate in the coincidence basis,” Phys. Rev. A 65, 062324 (2002).
[CrossRef]

Lanyon, B. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

Lee, H.

H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
[CrossRef]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[CrossRef] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[CrossRef] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

Nagata, T.

T. Nagata, R. Okamoto, H. F. Hofmann, and S. Takeuchi, “Analysis of experimental error sources in a linear-optics quantum gate,” New J. Phys. 12, 043053 (2010).
[CrossRef]

R. Okamoto, J. L. O’Brien, H. F. Hoffman, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science 323, 483–485 (2009).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[CrossRef] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, England, 2000).

O’Brien, J. L.

R. Okamoto, J. L. O’Brien, H. F. Hofmann, and S. Takeuchi, “Realization of a Knill-Laflamme-Milburn C-NOT gate a photonic quantum circuit combining effective optical nonlinearities,” Proc. Natl. Acad. Sci. USA 108, 10067–10071 (2011).
[CrossRef] [PubMed]

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

R. Okamoto, J. L. O’Brien, H. F. Hoffman, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science 323, 483–485 (2009).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[CrossRef] [PubMed]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[CrossRef] [PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature (London) 426, 264–267 (2003).
[CrossRef]

Okamoto, R.

R. Okamoto, J. L. O’Brien, H. F. Hofmann, and S. Takeuchi, “Realization of a Knill-Laflamme-Milburn C-NOT gate a photonic quantum circuit combining effective optical nonlinearities,” Proc. Natl. Acad. Sci. USA 108, 10067–10071 (2011).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, H. F. Hofmann, and S. Takeuchi, “Analysis of experimental error sources in a linear-optics quantum gate,” New J. Phys. 12, 043053 (2010).
[CrossRef]

R. Okamoto, J. L. O’Brien, H. F. Hoffman, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science 323, 483–485 (2009).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[CrossRef] [PubMed]

Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express 15, 14244–14250 (2007).
[CrossRef] [PubMed]

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[CrossRef] [PubMed]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Prevedel, R.

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302(R) (2009).
[CrossRef]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[CrossRef] [PubMed]

Pryde, G. J.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[CrossRef] [PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature (London) 426, 264–267 (2003).
[CrossRef]

Ralph, T. C.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature (London) 426, 264–267 (2003).
[CrossRef]

T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, “Linear optical controlled-NOT gate in the coincidence basis,” Phys. Rev. A 65, 062324 (2002).
[CrossRef]

Rarity, J. G.

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[CrossRef]

Resch, K. J.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[CrossRef] [PubMed]

Saltiel, S. M.

Sasaki, K.

R. Okamoto, J. L. O’Brien, H. F. Hoffman, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science 323, 483–485 (2009).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[CrossRef] [PubMed]

Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express 15, 14244–14250 (2007).
[CrossRef] [PubMed]

Y. Kawabe, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Investigation of the spatial propagation properties of type-I parametric fluorescence by use of tuning curve filtering method,” Jpn. J. Appl. Phys. 46, 5802–5808 (2007).
[CrossRef]

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[CrossRef] [PubMed]

Schmid, C.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[CrossRef] [PubMed]

Sibbett, W.

Takeuchi, S.

R. Okamoto, J. L. O’Brien, H. F. Hofmann, and S. Takeuchi, “Realization of a Knill-Laflamme-Milburn C-NOT gate a photonic quantum circuit combining effective optical nonlinearities,” Proc. Natl. Acad. Sci. USA 108, 10067–10071 (2011).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, H. F. Hofmann, and S. Takeuchi, “Analysis of experimental error sources in a linear-optics quantum gate,” New J. Phys. 12, 043053 (2010).
[CrossRef]

R. Okamoto, J. L. O’Brien, H. F. Hoffman, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science 323, 483–485 (2009).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[CrossRef] [PubMed]

Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express 15, 14244–14250 (2007).
[CrossRef] [PubMed]

Y. Kawabe, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Investigation of the spatial propagation properties of type-I parametric fluorescence by use of tuning curve filtering method,” Jpn. J. Appl. Phys. 46, 5802–5808 (2007).
[CrossRef]

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[CrossRef] [PubMed]

H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A 66, 024308 (2002).
[CrossRef]

Tapster, P. R.

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[CrossRef]

Ursin, R.

T. Jennewein, R. Ursin, M. Aspelmeyer, and A. Zeilinger, “Performing high-quality multi-photon experiments with parametric down-conversion,” J. Phys. B 42, 114008 (2009).
[CrossRef]

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[CrossRef] [PubMed]

Wang, R. P.

H. R. Zhang and R. P. Wang, “Theory of fourfold interference with photon pairs from spatially separated sources,” Phys. Rev. A 75, 053804 (2007).
[CrossRef]

Weber, U.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[CrossRef] [PubMed]

Weinfurter, H.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[CrossRef] [PubMed]

M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling independent pulsed photon sources,” Ann. N.Y. Acad. Sci. 755, 91–102 (1995).
[CrossRef]

Weinhold, T. J.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[CrossRef] [PubMed]

White, A. G.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[CrossRef] [PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature (London) 426, 264–267 (2003).
[CrossRef]

T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, “Linear optical controlled-NOT gate in the coincidence basis,” Phys. Rev. A 65, 062324 (2002).
[CrossRef]

Williams, C. P.

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

Zeilinger, A.

T. Jennewein, R. Ursin, M. Aspelmeyer, and A. Zeilinger, “Performing high-quality multi-photon experiments with parametric down-conversion,” J. Phys. B 42, 114008 (2009).
[CrossRef]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302(R) (2009).
[CrossRef]

R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 240502 (2006).
[CrossRef] [PubMed]

M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling independent pulsed photon sources,” Ann. N.Y. Acad. Sci. 755, 91–102 (1995).
[CrossRef]

Zhang, H. R.

H. R. Zhang and R. P. Wang, “Theory of fourfold interference with photon pairs from spatially separated sources,” Phys. Rev. A 75, 053804 (2007).
[CrossRef]

Zukowski, M.

R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 240502 (2006).
[CrossRef] [PubMed]

M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling independent pulsed photon sources,” Ann. N.Y. Acad. Sci. 755, 91–102 (1995).
[CrossRef]

Ann. N.Y. Acad. Sci. (1)

M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling independent pulsed photon sources,” Ann. N.Y. Acad. Sci. 755, 91–102 (1995).
[CrossRef]

J. Mod. Opt. (2)

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[CrossRef]

H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

T. Jennewein, R. Ursin, M. Aspelmeyer, and A. Zeilinger, “Performing high-quality multi-photon experiments with parametric down-conversion,” J. Phys. B 42, 114008 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kawabe, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Investigation of the spatial propagation properties of type-I parametric fluorescence by use of tuning curve filtering method,” Jpn. J. Appl. Phys. 46, 5802–5808 (2007).
[CrossRef]

Nat. Phys. (1)

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009).
[CrossRef]

Nature (London) (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001).
[CrossRef]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature (London) 426, 264–267 (2003).
[CrossRef]

New J. Phys. (1)

T. Nagata, R. Okamoto, H. F. Hofmann, and S. Takeuchi, “Analysis of experimental error sources in a linear-optics quantum gate,” New J. Phys. 12, 043053 (2010).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (5)

H. R. Zhang and R. P. Wang, “Theory of fourfold interference with photon pairs from spatially separated sources,” Phys. Rev. A 75, 053804 (2007).
[CrossRef]

M. Barbieri, “Effects of frequency correlation in linear optical entangling gates operated with independent photons,” Phys. Rev. A 76, 043825 (2007).
[CrossRef]

R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302(R) (2009).
[CrossRef]

T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, “Linear optical controlled-NOT gate in the coincidence basis,” Phys. Rev. A 65, 062324 (2002).
[CrossRef]

H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A 66, 024308 (2002).
[CrossRef]

Phys. Rev. Lett. (6)

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[CrossRef] [PubMed]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[CrossRef] [PubMed]

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[CrossRef] [PubMed]

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 240502 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

R. Okamoto, J. L. O’Brien, H. F. Hofmann, and S. Takeuchi, “Realization of a Knill-Laflamme-Milburn C-NOT gate a photonic quantum circuit combining effective optical nonlinearities,” Proc. Natl. Acad. Sci. USA 108, 10067–10071 (2011).
[CrossRef] [PubMed]

Science (3)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[CrossRef] [PubMed]

R. Okamoto, J. L. O’Brien, H. F. Hoffman, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science 323, 483–485 (2009).
[CrossRef] [PubMed]

Other (3)

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers Systems and Signal Processing175–179 (1984).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, England, 2000).

R. Kaltenbaek, 2008 PhD Thesis.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of Hong-Ou-Mandel interferometer between photons in a pair. (b) Since photons in a pair are generated from a single pump photon, no timing-jitter occurs. (c) Schematic of Hong-Ou-Mandel interferometer between photons in different pairs. (d) The timing-jitter caused by non-zero pulse duration. The photon pairs are generated in the front side (left side) in BBO1 and in the back side (right side) in BBO2. Thus, the input photons has the timing jitter. (e) The timing-jitter caused by GVM. Since the daughter photons propagate faster than the pump light (GVM), the timing-jitter occurs between photons in different pairs.

Fig. 2
Fig. 2

Experimental setup of HOM interferometer between independent photons. SHG: second harmonic generation; PMF: polarization maintaining fiber; SMF: single-mode fiber; HWP (QWP): half (quarter) wave plate; SPCM: single-photon counting module.

Fig. 3
Fig. 3

HOM dips between daughter photons. The HOM dips are between Signal 1 and Idler 1 in Fig. 2 and with four different conditions (a) 0.7-mm BBO with 2-nm band-pass filters, (b) 0.7-mm BBO with 4-nm band-pass filters, (c) 1.5-mm BBO with 2-nm band-pass filters, and (d) 1.5-mm BBO with 4nm band-pass filters.

Fig. 4
Fig. 4

HOM dips between photons in different pairs. (a) 0.7-mm BBO with 2-nm bandpass filters, (b) 0.7-mm BBO with 4-nm band-pass filters, (c) 1.5-mm BBO with 2-nm band-pass filters, and (d) 1.5-mm BBO with 4nm band-pass filters.

Fig. 5
Fig. 5

Relationship between GVM and coherence time of interfering photons. Blue and red lines are d at BPF = 2 and 4 nm, respectively. The dotted lines show the cases where SPDC occurs uniformly throughout the crystal [20].

Tables (2)

Tables Icon

Table 1 Visibilities between photons in a pair for four conditions. S1: Signal 1; S2: Signal 2; I1: Idler 1; I2: Idler 2.

Tables Icon

Table 2 Visibilities between different photon pairs for four conditions. S1: Signal 1; S2: Signal 2; I1: Idler 1; I2: Idler 2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N ( δ τ ) = N max ( 1 V × e ( δ τ τ c ) 2 ) ,
V ˜ = 2 R 2 2 R + 1 2 R 2 R 2 × V .
V ˜ d = V ˜ s × V pump × V G V M ,
V pump = τ p 2 τ t 2 + τ t 2 τ i 2 + τ i 2 τ p 2 ( τ p 2 + τ t 2 ) ( τ p 2 + τ i 2 ) = 1 1 ( 1 + τ t 2 τ p 2 ) ( 1 + τ i 2 τ p 2 ) .
Δ u = 1 v ge ( λ / 2 ) 1 v go ( λ ) ,
F ( T , δ τ ) = 0 T 0 T g ( τ ) g ( τ ) ( 1 e ( δ τ τ τ T τ c ) 2 ) d τ d τ ,
g ( τ ) = { 1 ( 0 τ L ) 0 ( otherwise ) } .
g ( τ ) = { τ ( 0 τ L ) 0 ( otherwise ) } .
V G V M = 1 min [ F ( T , t ) , t ] F [ T , ] .

Metrics