Abstract

We present a novel simulation method to investigate the multicolored effect of the Diachea leucopoda (Physarales order, Myxomycetes class), which is a microorganism that has a characteristic pointillistic iridescent appearance. It was shown that this appearance is of structural origin, and is produced within the peridium -protective layer that encloses the mass of spores-, which is basically a corrugated sheet of a transparent material. The main characteristics of the observed color were explained in terms of interference effects using a simple model of homogeneous planar slab. In this paper we apply a novel simulation method to investigate the electromagnetic response of such structure in more detail, i.e., taking into account the inhomogeneities of the biological material within the peridium and its curvature. We show that both features, which could not be considered within the simplified model, affect the observed color. The proposed method is of great potential for the study of biological structures, which present a high degree of complexity in the geometrical shapes as well as in the materials involved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2, R15–R28 (2000).
    [CrossRef]
  2. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
    [CrossRef] [PubMed]
  3. S. Berthier, Iridescences, the physical colours of insects (Springer Science+Business Media, LLC, 2007).
  4. S. Kinoshita, Structural colors in the realm of nature (World Scientific Publishing Co., 2008).
    [CrossRef]
  5. S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc., Interface 6, S115–S132 (2009).
  6. S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A 23, 134–141 (2006).
    [CrossRef]
  7. W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim. 1, 89–95 (2006).
    [CrossRef]
  8. R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal-evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
    [CrossRef]
  9. R. J. Martín-Palma and A. Lakhtakia, “Biomimetics and bioinspiration,” Proc. SPIE 7401, 1–196 (2009).
  10. S. Stephenson and H. Stempen, Myxomycetes. A handbook of slime molds (Timber Press, 2000).
  11. H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains national park: ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
    [CrossRef] [PubMed]
  12. J. D. Schoknecht and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot. 55, 1807–1819 (1977).
    [CrossRef]
  13. H. C. Aldrich, “Influence of inorganic ions on color of lime in the myxomycetes,” Mycologia 74, 404–411 (1982).
    [CrossRef]
  14. T. W. Gaither and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Pl. 74, 217–230 (2004).
  15. M. Inchaussandague, D. Skigin, C. Carmaran, and S. Rosenfeldt, “Structural color in Myxomycetes,” Opt. Express 18, 16055–16063 (2010).
    [CrossRef] [PubMed]
  16. C. Carmaran, Departamento de Biodiversidad y Biología Experimental, FCEN, University of Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires, Argentina, S. Rosenfeldt, D. Skigin, M. Inchaussandague, and H. Keller, are preparing a manuscript to be called “Iridescence and ultrastructure in the myxomycete Diachea leucopodia (Physarales).”
  17. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc., Interface 6, S133–S148 (2009).
  18. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
    [CrossRef]
  19. S. Yoshioka, E. Nakamura, and S. Kinoshita, “Origin of two-color iridescence in rock dove’s feather,” J. Phys. Soc. Jpn. 76, 013801 (2007).
    [CrossRef]
  20. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15, 4351–4357 (2007).
    [CrossRef] [PubMed]
  21. S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011).
    [CrossRef]
  22. A. Luna, D. Skigin, M. Inchaussandague, and A. Roig Alsina, “Structural color in beetles of South America,” Proc. SPIE 7782, 778205 (2010).
    [CrossRef]
  23. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9, 567–578 (2001).
    [CrossRef] [PubMed]
  24. R. O. Prum and R. Torres, “Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 206, 2409–2429 (2003).
    [CrossRef] [PubMed]
  25. R. O. Prum, T. Quinn, and R. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209, 748–765 (2006).
    [CrossRef] [PubMed]
  26. A. E. Dolinko, “From Newton’s second law to Huygens’s principle: visualizing waves in a large array of masses joined by springs,” Eur. J. Phys. 30, 1217–1228 (2009).
    [CrossRef]
  27. U. Eliasson, “Ultrastructure of Lycogala and Reticularia,” Trans. Br. Mycol. Soc. 77, 243–249 (1981).
    [CrossRef]
  28. E. F. Haskins and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia 81, 303–307 (1989).
    [CrossRef]
  29. R. McHugh and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res. 94, 1144–1146 (1990).
    [CrossRef]
  30. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
    [CrossRef]

2011 (1)

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011).
[CrossRef]

2010 (2)

A. Luna, D. Skigin, M. Inchaussandague, and A. Roig Alsina, “Structural color in beetles of South America,” Proc. SPIE 7782, 778205 (2010).
[CrossRef]

M. Inchaussandague, D. Skigin, C. Carmaran, and S. Rosenfeldt, “Structural color in Myxomycetes,” Opt. Express 18, 16055–16063 (2010).
[CrossRef] [PubMed]

2009 (4)

R. J. Martín-Palma and A. Lakhtakia, “Biomimetics and bioinspiration,” Proc. SPIE 7401, 1–196 (2009).

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc., Interface 6, S115–S132 (2009).

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc., Interface 6, S133–S148 (2009).

A. E. Dolinko, “From Newton’s second law to Huygens’s principle: visualizing waves in a large array of masses joined by springs,” Eur. J. Phys. 30, 1217–1228 (2009).
[CrossRef]

2008 (2)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal-evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
[CrossRef]

2007 (2)

S. Yoshioka, E. Nakamura, and S. Kinoshita, “Origin of two-color iridescence in rock dove’s feather,” J. Phys. Soc. Jpn. 76, 013801 (2007).
[CrossRef]

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15, 4351–4357 (2007).
[CrossRef] [PubMed]

2006 (3)

S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A 23, 134–141 (2006).
[CrossRef]

R. O. Prum, T. Quinn, and R. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209, 748–765 (2006).
[CrossRef] [PubMed]

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim. 1, 89–95 (2006).
[CrossRef]

2004 (2)

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains national park: ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

T. W. Gaither and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Pl. 74, 217–230 (2004).

2003 (2)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef] [PubMed]

R. O. Prum and R. Torres, “Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 206, 2409–2429 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

A. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2, R15–R28 (2000).
[CrossRef]

1990 (2)

R. McHugh and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res. 94, 1144–1146 (1990).
[CrossRef]

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

1989 (1)

E. F. Haskins and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia 81, 303–307 (1989).
[CrossRef]

1982 (1)

H. C. Aldrich, “Influence of inorganic ions on color of lime in the myxomycetes,” Mycologia 74, 404–411 (1982).
[CrossRef]

1981 (1)

U. Eliasson, “Ultrastructure of Lycogala and Reticularia,” Trans. Br. Mycol. Soc. 77, 243–249 (1981).
[CrossRef]

1977 (1)

J. D. Schoknecht and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot. 55, 1807–1819 (1977).
[CrossRef]

Aldrich, H. C.

H. C. Aldrich, “Influence of inorganic ions on color of lime in the myxomycetes,” Mycologia 74, 404–411 (1982).
[CrossRef]

Berthier, S.

S. Berthier, Iridescences, the physical colours of insects (Springer Science+Business Media, LLC, 2007).

Carmaran, C.

Ding, J.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim. 1, 89–95 (2006).
[CrossRef]

Dolinko, A. E.

A. E. Dolinko, “From Newton’s second law to Huygens’s principle: visualizing waves in a large array of masses joined by springs,” Eur. J. Phys. 30, 1217–1228 (2009).
[CrossRef]

Doucet, S. M.

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc., Interface 6, S115–S132 (2009).

Eliasson, U.

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains national park: ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

U. Eliasson, “Ultrastructure of Lycogala and Reticularia,” Trans. Br. Mycol. Soc. 77, 243–249 (1981).
[CrossRef]

Enoch, S.

Fan, T.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim. 1, 89–95 (2006).
[CrossRef]

Gaither, T.

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains national park: ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

Gaither, T. W.

T. W. Gaither and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Pl. 74, 217–230 (2004).

Gralak, B.

Gu, J.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim. 1, 89–95 (2006).
[CrossRef]

Guo, Q.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim. 1, 89–95 (2006).
[CrossRef]

Haskins, E. F.

E. F. Haskins and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia 81, 303–307 (1989).
[CrossRef]

Hooper, I. R.

Inchaussandague, M.

M. Inchaussandague, D. Skigin, C. Carmaran, and S. Rosenfeldt, “Structural color in Myxomycetes,” Opt. Express 18, 16055–16063 (2010).
[CrossRef] [PubMed]

A. Luna, D. Skigin, M. Inchaussandague, and A. Roig Alsina, “Structural color in beetles of South America,” Proc. SPIE 7782, 778205 (2010).
[CrossRef]

Keller, H. W.

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains national park: ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

T. W. Gaither and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Pl. 74, 217–230 (2004).

J. D. Schoknecht and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot. 55, 1807–1819 (1977).
[CrossRef]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011).
[CrossRef]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

S. Yoshioka, E. Nakamura, and S. Kinoshita, “Origin of two-color iridescence in rock dove’s feather,” J. Phys. Soc. Jpn. 76, 013801 (2007).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A 23, 134–141 (2006).
[CrossRef]

S. Kinoshita, Structural colors in the realm of nature (World Scientific Publishing Co., 2008).
[CrossRef]

Lakhtakia, A.

R. J. Martín-Palma and A. Lakhtakia, “Biomimetics and bioinspiration,” Proc. SPIE 7401, 1–196 (2009).

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal-evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
[CrossRef]

Luna, A.

A. Luna, D. Skigin, M. Inchaussandague, and A. Roig Alsina, “Structural color in beetles of South America,” Proc. SPIE 7782, 778205 (2010).
[CrossRef]

Maradudin, A. A.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Martín-Palma, R. J.

R. J. Martín-Palma and A. Lakhtakia, “Biomimetics and bioinspiration,” Proc. SPIE 7401, 1–196 (2009).

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal-evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
[CrossRef]

McGuiness, M. D.

E. F. Haskins and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia 81, 303–307 (1989).
[CrossRef]

McGurn, A. R.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

McHugh, R.

R. McHugh and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res. 94, 1144–1146 (1990).
[CrossRef]

Meadows, M. G.

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc., Interface 6, S115–S132 (2009).

Méndez, E. R.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Michel, T.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Nakamura, E.

S. Yoshioka, E. Nakamura, and S. Kinoshita, “Origin of two-color iridescence in rock dove’s feather,” J. Phys. Soc. Jpn. 76, 013801 (2007).
[CrossRef]

Noyes, J. A.

Ogawa, H.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim. 1, 89–95 (2006).
[CrossRef]

Pantano, C. G.

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal-evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
[CrossRef]

Parker, A.

A. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2, R15–R28 (2000).
[CrossRef]

Prum, R. O.

R. O. Prum, T. Quinn, and R. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209, 748–765 (2006).
[CrossRef] [PubMed]

R. O. Prum and R. Torres, “Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 206, 2409–2429 (2003).
[CrossRef] [PubMed]

Quinn, T.

R. O. Prum, T. Quinn, and R. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209, 748–765 (2006).
[CrossRef] [PubMed]

Reid, C.

R. McHugh and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res. 94, 1144–1146 (1990).
[CrossRef]

Roig Alsina, A.

A. Luna, D. Skigin, M. Inchaussandague, and A. Roig Alsina, “Structural color in beetles of South America,” Proc. SPIE 7782, 778205 (2010).
[CrossRef]

Rosenfeldt, S.

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef] [PubMed]

Schoknecht, J. D.

J. D. Schoknecht and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot. 55, 1807–1819 (1977).
[CrossRef]

Skigin, D.

M. Inchaussandague, D. Skigin, C. Carmaran, and S. Rosenfeldt, “Structural color in Myxomycetes,” Opt. Express 18, 16055–16063 (2010).
[CrossRef] [PubMed]

A. Luna, D. Skigin, M. Inchaussandague, and A. Roig Alsina, “Structural color in beetles of South America,” Proc. SPIE 7782, 778205 (2010).
[CrossRef]

Skrabal, M.

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains national park: ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

Stavenga, D. G.

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc., Interface 6, S133–S148 (2009).

Stempen, H.

S. Stephenson and H. Stempen, Myxomycetes. A handbook of slime molds (Timber Press, 2000).

Stephenson, S.

S. Stephenson and H. Stempen, Myxomycetes. A handbook of slime molds (Timber Press, 2000).

Tayeb, G.

Torres, R.

R. O. Prum, T. Quinn, and R. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209, 748–765 (2006).
[CrossRef] [PubMed]

R. O. Prum and R. Torres, “Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 206, 2409–2429 (2003).
[CrossRef] [PubMed]

Vukusic, P.

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc., Interface 6, S133–S148 (2009).

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15, 4351–4357 (2007).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef] [PubMed]

Yoshioka, S.

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011).
[CrossRef]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

S. Yoshioka, E. Nakamura, and S. Kinoshita, “Origin of two-color iridescence in rock dove’s feather,” J. Phys. Soc. Jpn. 76, 013801 (2007).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A 23, 134–141 (2006).
[CrossRef]

Zhang, D.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim. 1, 89–95 (2006).
[CrossRef]

Zhang, W.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim. 1, 89–95 (2006).
[CrossRef]

Ann. Phys. (1)

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. 203, 255–307 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal-evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
[CrossRef]

Bioinsp. Biomim. (1)

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinsp. Biomim. 1, 89–95 (2006).
[CrossRef]

Can. J. Bot. (1)

J. D. Schoknecht and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot. 55, 1807–1819 (1977).
[CrossRef]

Eur. J. Phys. (1)

A. E. Dolinko, “From Newton’s second law to Huygens’s principle: visualizing waves in a large array of masses joined by springs,” Eur. J. Phys. 30, 1217–1228 (2009).
[CrossRef]

J. Exp. Biol. (2)

R. O. Prum and R. Torres, “Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays,” J. Exp. Biol. 206, 2409–2429 (2003).
[CrossRef] [PubMed]

R. O. Prum, T. Quinn, and R. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209, 748–765 (2006).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

A. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2, R15–R28 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Soc. Jpn. (1)

S. Yoshioka, E. Nakamura, and S. Kinoshita, “Origin of two-color iridescence in rock dove’s feather,” J. Phys. Soc. Jpn. 76, 013801 (2007).
[CrossRef]

J. R. Soc., Interface (2)

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc., Interface 6, S133–S148 (2009).

S. M. Doucet and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc., Interface 6, S115–S132 (2009).

Mycol. Res. (1)

R. McHugh and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res. 94, 1144–1146 (1990).
[CrossRef]

Mycologia (3)

E. F. Haskins and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia 81, 303–307 (1989).
[CrossRef]

H. C. Aldrich, “Influence of inorganic ions on color of lime in the myxomycetes,” Mycologia 74, 404–411 (1982).
[CrossRef]

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains national park: ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. E (1)

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E 83, 051917 (2011).
[CrossRef]

Proc. SPIE (2)

A. Luna, D. Skigin, M. Inchaussandague, and A. Roig Alsina, “Structural color in beetles of South America,” Proc. SPIE 7782, 778205 (2010).
[CrossRef]

R. J. Martín-Palma and A. Lakhtakia, “Biomimetics and bioinspiration,” Proc. SPIE 7401, 1–196 (2009).

Rep. Prog. Phys. (1)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[CrossRef]

Syst. Geogr. Pl. (1)

T. W. Gaither and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Pl. 74, 217–230 (2004).

Trans. Br. Mycol. Soc. (1)

U. Eliasson, “Ultrastructure of Lycogala and Reticularia,” Trans. Br. Mycol. Soc. 77, 243–249 (1981).
[CrossRef]

Other (4)

C. Carmaran, Departamento de Biodiversidad y Biología Experimental, FCEN, University of Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires, Argentina, S. Rosenfeldt, D. Skigin, M. Inchaussandague, and H. Keller, are preparing a manuscript to be called “Iridescence and ultrastructure in the myxomycete Diachea leucopodia (Physarales).”

S. Stephenson and H. Stempen, Myxomycetes. A handbook of slime molds (Timber Press, 2000).

S. Berthier, Iridescences, the physical colours of insects (Springer Science+Business Media, LLC, 2007).

S. Kinoshita, Structural colors in the realm of nature (World Scientific Publishing Co., 2008).
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (526 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diachea leucopoda observed under the optical microscope.

Fig. 2
Fig. 2

(a)–(c) Scanning electron microscope images of the Diachea leucopoda with different magnifications: (a) a complete individual, (b) the peridium, (c) cross section of the peridium; (d) transmission electron microscope image of the peridium cross section.

Fig. 3
Fig. 3

Integrated reflectance of a planar slab of thickness 525 nm and nmean = 1.75 as a function of the wavelength, for a normally incident beam of width 2μm. The different curves correspond to different compositions of the slab: homogeneous (H), inhomogeneous with 1.5 < n < 2 and size of the granules ≈ 60 nm (A1), inhomogeneous with 1.61 < n < 2 and size of the granules ≈ 120 nm (A2), and inhomogeneous based on a TEM image of the peridium cross section (R). Inset: bitmaps used to generate these curves. The four images share the same gray scale: black corresponds to the lower refraction index n = 1.5 and white to n = 2.

Fig. 4
Fig. 4

Logarithm of the differential reflection coefficient of a planar slab of thickness 525 nm as a function of the wavelength and of the observation angle for a normally incident beam of width 2μm, and for three of the slabs considered in Fig. 3: (a) H; (b) A1; (c) R.

Fig. 5
Fig. 5

Logarithm of the differential reflection coefficient of a curved slab of thickness 525 nm and radius of curvature 6 μm as a function of the wavelength and of the observation angle for a normally incident beam of width 2μm, and for different composition of the slabs. (a) homogeneous with n = 1.75; (b) inhomogeneous with nmean = 1.75 and 1.5 < n < 2. In the inset above each panel we show the corresponding refraction index bitmaps of the curved slabs.

Fig. 6
Fig. 6

Movie of the reflected near field of an artificially inhomogeneous curved slab of thickness 525 nm, radius of curvature 6 μm, nmean = 1.75 and 1.5 < n < 2, for a normally incident beam of width 2μm, for increasing wavelengths (from 380 to 780 nm, in steps of 10 nm) ( Media 1). The three panels correspond to different frames for particular wavelengths: (a) λ = 520 nm; (b) λ = 560 nm; (c) λ = 760 nm.

Metrics