Abstract

We study the anisotropic properties of multilayer fishnet optical metamaterials and describe topological transitions between the elliptic and hyperbolic dispersion regimes. In contrast to other hyperbolic media, multilayer fishnet metamaterials may have negative components not only in the effective permittivity tensor but also in the effective permeability tensor, thus allowing the realization of magnetic hyperbolic and generalized indefinite media.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
    [CrossRef] [PubMed]
  2. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 075103 (2006).
    [CrossRef]
  3. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).
    [CrossRef]
  4. M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
    [CrossRef]
  5. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
    [CrossRef]
  6. L. M. Custodio, C. T. Sousa, J. Ventura, J. M. Teixeira, P. V. S. Marques, and J. P. Araujo, “Birefringence swap at the transition to hyperbolic dispersion in metamaterilas,” Phys. Rev. B 85, 165408 (2012).
    [CrossRef]
  7. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336, 205–209 (2012).
    [CrossRef] [PubMed]
  8. E. Narimanov and I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” arXiv:1109.5444v1.
  9. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
    [CrossRef] [PubMed]
  10. M. Beruete, M. Navarro-Cia, and M. Sorolla, “High numerical aperture and low-loss negative refraction based on the fishnet rich anisotropy,” Photonics Nanostruct. Fundam. Appl. 10(3), 263–270 (2012).
    [CrossRef]
  11. M. Beruete, M. Navarro-Cia, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
    [CrossRef]
  12. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  13. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  14. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
  15. J. Zhou, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B. 80, 035109 (2009).
    [CrossRef]
  16. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
    [CrossRef]
  17. C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
    [CrossRef]
  18. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [CrossRef] [PubMed]
  19. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
    [CrossRef] [PubMed]
  20. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1959).
  21. A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Yu. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
    [CrossRef]
  22. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
    [CrossRef]

2012 (3)

M. Beruete, M. Navarro-Cia, and M. Sorolla, “High numerical aperture and low-loss negative refraction based on the fishnet rich anisotropy,” Photonics Nanostruct. Fundam. Appl. 10(3), 263–270 (2012).
[CrossRef]

L. M. Custodio, C. T. Sousa, J. Ventura, J. M. Teixeira, P. V. S. Marques, and J. P. Araujo, “Birefringence swap at the transition to hyperbolic dispersion in metamaterilas,” Phys. Rev. B 85, 165408 (2012).
[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336, 205–209 (2012).
[CrossRef] [PubMed]

2011 (3)

C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
[CrossRef]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Yu. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

2010 (2)

M. Beruete, M. Navarro-Cia, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

2009 (3)

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[CrossRef]

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B. 80, 035109 (2009).
[CrossRef]

2008 (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

2006 (4)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[CrossRef] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 075103 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

2003 (1)

D. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

1953 (1)

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Alekseyev, L. V.

Araujo, J. P.

L. M. Custodio, C. T. Sousa, J. Ventura, J. M. Teixeira, P. V. S. Marques, and J. P. Araujo, “Birefringence swap at the transition to hyperbolic dispersion in metamaterilas,” Phys. Rev. B 85, 165408 (2012).
[CrossRef]

Barnakov, Yu. A.

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Belov, P. A.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Yu. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 075103 (2006).
[CrossRef]

Beruete, M.

M. Beruete, M. Navarro-Cia, and M. Sorolla, “High numerical aperture and low-loss negative refraction based on the fishnet rich anisotropy,” Photonics Nanostruct. Fundam. Appl. 10(3), 263–270 (2012).
[CrossRef]

M. Beruete, M. Navarro-Cia, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1959).

Chebykin, A. V.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Yu. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[CrossRef]

Custodio, L. M.

L. M. Custodio, C. T. Sousa, J. Ventura, J. M. Teixeira, P. V. S. Marques, and J. P. Araujo, “Birefringence swap at the transition to hyperbolic dispersion in metamaterilas,” Phys. Rev. B 85, 165408 (2012).
[CrossRef]

Dickson, W.

C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
[CrossRef]

Engheta, N.

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Fang, A.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

Garcia-Meca, C.

C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Hao, Y.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 075103 (2006).
[CrossRef]

Hattori, H. T.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

Hurtado, J.

C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
[CrossRef]

Jacob, Z.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336, 205–209 (2012).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[CrossRef] [PubMed]

Jagadish, C.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B. 80, 035109 (2009).
[CrossRef]

Kivshar, Yu. S.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Yu. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B. 80, 035109 (2009).
[CrossRef]

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336, 205–209 (2012).
[CrossRef] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336, 205–209 (2012).
[CrossRef] [PubMed]

Lapine, M.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

Lederer, F.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Li, H.

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[CrossRef]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Marques, P. V. S.

L. M. Custodio, C. T. Sousa, J. Ventura, J. M. Teixeira, P. V. S. Marques, and J. P. Araujo, “Birefringence swap at the transition to hyperbolic dispersion in metamaterilas,” Phys. Rev. B 85, 165408 (2012).
[CrossRef]

Marti, J.

C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
[CrossRef]

Martinez, A.

C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
[CrossRef]

Maslovski, S. I.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Yu. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[CrossRef]

McKerracher, I.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336, 205–209 (2012).
[CrossRef] [PubMed]

Menzel, C.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Minovich, A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336, 205–209 (2012).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[CrossRef] [PubMed]

E. Narimanov and I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” arXiv:1109.5444v1.

Narimanov, E. E.

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[CrossRef]

Navarro-Cia, M.

M. Beruete, M. Navarro-Cia, and M. Sorolla, “High numerical aperture and low-loss negative refraction based on the fishnet rich anisotropy,” Photonics Nanostruct. Fundam. Appl. 10(3), 263–270 (2012).
[CrossRef]

M. Beruete, M. Navarro-Cia, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
[CrossRef]

Neshev, D. N.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

Noginov, M. A.

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[CrossRef]

Orlov, A. A.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Yu. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Paul, T.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Pertsch, T.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Powell, D. A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Schurig, D.

D. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Shadrivov, I. V.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

Silveirinha, M.

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

Smith, D.

D. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Smolyaninov, I.

E. Narimanov and I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” arXiv:1109.5444v1.

Sorolla, M.

M. Beruete, M. Navarro-Cia, and M. Sorolla, “High numerical aperture and low-loss negative refraction based on the fishnet rich anisotropy,” Photonics Nanostruct. Fundam. Appl. 10(3), 263–270 (2012).
[CrossRef]

M. Beruete, M. Navarro-Cia, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
[CrossRef]

Soukoulis, C.

J. Zhou, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B. 80, 035109 (2009).
[CrossRef]

Soukoulis, C. M.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Sousa, C. T.

L. M. Custodio, C. T. Sousa, J. Ventura, J. M. Teixeira, P. V. S. Marques, and J. P. Araujo, “Birefringence swap at the transition to hyperbolic dispersion in metamaterilas,” Phys. Rev. B 85, 165408 (2012).
[CrossRef]

Tan, H. H.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

Teixeira, J. M.

L. M. Custodio, C. T. Sousa, J. Ventura, J. M. Teixeira, P. V. S. Marques, and J. P. Araujo, “Birefringence swap at the transition to hyperbolic dispersion in metamaterilas,” Phys. Rev. B 85, 165408 (2012).
[CrossRef]

Tumkur, T.

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Ventura, J.

L. M. Custodio, C. T. Sousa, J. Ventura, J. M. Teixeira, P. V. S. Marques, and J. P. Araujo, “Birefringence swap at the transition to hyperbolic dispersion in metamaterilas,” Phys. Rev. B 85, 165408 (2012).
[CrossRef]

Voroshilov, P. M.

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Vozianova, A. V.

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Yu. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1959).

Zayats, A. V.

C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
[CrossRef]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B. 80, 035109 (2009).
[CrossRef]

Zhu, G.

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

New J. Phys. (1)

M. Beruete, M. Navarro-Cia, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
[CrossRef]

Opt. Express (1)

Photonics Nanostruct. Fundam. Appl. (1)

M. Beruete, M. Navarro-Cia, and M. Sorolla, “High numerical aperture and low-loss negative refraction based on the fishnet rich anisotropy,” Photonics Nanostruct. Fundam. Appl. 10(3), 263–270 (2012).
[CrossRef]

Phys. Rev. B (9)

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 075103 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

L. M. Custodio, C. T. Sousa, J. Ventura, J. M. Teixeira, P. V. S. Marques, and J. P. Araujo, “Birefringence swap at the transition to hyperbolic dispersion in metamaterilas,” Phys. Rev. B 85, 165408 (2012).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010).
[CrossRef]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Yu. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).
[CrossRef]

A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Yu. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011).
[CrossRef]

Phys. Rev. B. (1)

J. Zhou, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B. 80, 035109 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
[CrossRef]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef] [PubMed]

D. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Science (1)

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336, 205–209 (2012).
[CrossRef] [PubMed]

Other (3)

E. Narimanov and I. Smolyaninov, “Beyond Stefan-Boltzmann law: thermal hyper-conductivity,” arXiv:1109.5444v1.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1959).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Supplementary Material (2)

» Media 1: MOV (3063 KB)     
» Media 2: MOV (3251 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) A unit cell with a=500 nm, b=351 nm, c=100 nm, d=45 nm, e=30 nm. (b) Single functional layer fishnet metamaterial. (c) Ten functional layer fishnet metamaterial. (d–f) Transmission, n and FOM for the single-layer fishnet (dashed curves) and 22-layer fishnet (solid curves). (g–i) Transmission, Real part of n and FOM for the fishnets versus wavelength and number of functional layers.

Fig. 2
Fig. 2

Propagation of the electromagnetic wave through the multilayer fishnet metamaterial in yz cross-section. (a) Normal incidence at wavelength 1.25 μm (see Media 1). (b) Oblique incidence at 45° angle, 1.20 μm wavelength (see Media 2). Color arrows show the direction of the phase velocity.

Fig. 3
Fig. 3

(a,e) TE and TM polarization of incident wave. (b,f) Transmission of the ten-layer fishnet versus wavelength and angle of incidence for TE and TM. (c,f) Isofrequency surfaces for wavelengths 1.03 μm (red curves), 1.09 μm (green curve) and 1.17 μm (blue curve) for TE and TM polarizations. (d,h) Real part of neff for normal incidence (red), 30° angle of incidence (green) and 60° angle of incidence (blue) for TE and TM. Solid curves correspond to the absolute values of neff, dashed curves correspond to the neff with sign chosen as proposed in [13, 14].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k = ± 1 h cos 1 ( 1 r 2 + t 2 2 t ) + 2 π m h ,
Re [ n ] = ± a + a 2 4 b 2 ; Im [ n ] = Re [ k z k 0 ] Im [ k z k 0 ] / Re [ n ] ,
a = Re [ k z k 0 ] 2 + Im [ k z k 0 ] 2 sin ( ϕ ) 2 ; b = Re [ k z k 0 ] 2 Im [ k z k 0 ] 2 .
TE : k y 2 ε x μ z + k z 2 ε x μ y = ω 2 c 2 ; TM : k x 2 ε z μ y + k z 2 ε x μ y = ω 2 c 2 .
ε ^ = ( ε x ( ω , k x ) 0 0 0 ε y 0 0 0 ε z ( ω ) ) ; μ ^ = ( μ x 0 0 0 μ y ( ω ) 0 0 0 1 ) .

Metrics