Abstract

We report on an Er-doped fiber oscillator that produces 146 fs pulses with 156 mW average power at a repetition rate of 49.9 MHz. The pulse energy reaches 3.13 nJ, surpassing the conventional power limit in the dispersion-managed soliton regime. Such high pulse power is obtained by devising a hybrid mode-locking scheme that combines saturable absorption with nonlinear polarization evolution. The oscillator also offers excellent temporal purity in the generated pulses with high power, providing a robust fiber-based frequency comb well suited for industrial uses.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [CrossRef]
  2. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
    [CrossRef]
  3. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  4. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [CrossRef] [PubMed]
  5. F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution,” Opt. Express 11(6), 594–600 (2003).
    [CrossRef] [PubMed]
  6. F.-L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
    [CrossRef] [PubMed]
  7. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [CrossRef] [PubMed]
  8. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [CrossRef]
  9. Y. Kim, Y.-J. Kim, S. Kim, and S.-W. Kim, “Er-doped fiber comb with enhanced fceo S/N ratio using Tm:Ho-doped fiber,” Opt. Express 17(21), 18606–18611 (2009).
    [CrossRef] [PubMed]
  10. Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
    [CrossRef] [PubMed]
  11. S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [CrossRef]
  12. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [CrossRef]
  13. S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
    [CrossRef]
  14. V. J. Matas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
    [CrossRef]
  15. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2227 (1992).
    [CrossRef]
  16. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1083 (1993).
    [CrossRef] [PubMed]
  17. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, “Efficient frequency doubling of a femtosecond fiber laser,” Opt. Lett. 21(21), 1759–1761 (1996).
    [CrossRef] [PubMed]
  18. D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007).
    [CrossRef] [PubMed]
  19. J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30(14), 1888–1890 (2005).
    [CrossRef] [PubMed]
  20. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Photonics 3, 597–603 (2007).
  21. B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
    [CrossRef]
  22. O. Prochnow, R. Paschotta, E. Benkler, U. Morgner, J. Neumann, D. Wandt, and D. Kracht, “Quantum-limited noise performance of a femtosecond all-fiber ytterbium laser,” Opt. Express 17(18), 15525–15533 (2009).
    [CrossRef] [PubMed]
  23. C. Senel, F. O. Ilday, O. Kara, C. Birlikseven, C. Erdogan, and R. Hamid, “All-normal-dispersion fiber lasers for frequency metrology,” paper CFM2, CLEO 2011 (Baltimore, MD, 2011).
  24. A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “On wave-breaking free fiber lasers mode-locked with two saturable absorber mechanisms,” Opt. Express 16(11), 8181–8189 (2008).
    [CrossRef] [PubMed]
  25. K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photon. Technol. Lett. 6(6), 697–699 (1994).
    [CrossRef]
  26. K. Tamura, E. P. Ippen, and H. A. Haus, “Optimization of filtering in soliton fiber lasers,” IEEE Photon. Technol. Lett. 6(12), 1433–1435 (1994).
    [CrossRef]

2011 (1)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[CrossRef]

2010 (2)

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[CrossRef]

S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[CrossRef]

2009 (4)

2008 (3)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[CrossRef]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “On wave-breaking free fiber lasers mode-locked with two saturable absorber mechanisms,” Opt. Express 16(11), 8181–8189 (2008).
[CrossRef] [PubMed]

2007 (2)

D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007).
[CrossRef] [PubMed]

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Photonics 3, 597–603 (2007).

2005 (1)

2004 (1)

2003 (2)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

1996 (1)

1994 (2)

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photon. Technol. Lett. 6(6), 697–699 (1994).
[CrossRef]

K. Tamura, E. P. Ippen, and H. A. Haus, “Optimization of filtering in soliton fiber lasers,” IEEE Photon. Technol. Lett. 6(12), 1433–1435 (1994).
[CrossRef]

1993 (1)

1992 (2)

V. J. Matas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2227 (1992).
[CrossRef]

Benkler, E.

Buckley, J. R.

Chong, A.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Diddams, S.

Diddams, S. A.

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Doerr, C. R.

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photon. Technol. Lett. 6(6), 697–699 (1994).
[CrossRef]

Dudley, J. M.

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Photonics 3, 597–603 (2007).

Fermann, M. E.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Finot, C.

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Photonics 3, 597–603 (2007).

Fleischer, S. B.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hartl, I.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

K. Tamura, E. P. Ippen, and H. A. Haus, “Optimization of filtering in soliton fiber lasers,” IEEE Photon. Technol. Lett. 6(12), 1433–1435 (1994).
[CrossRef]

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photon. Technol. Lett. 6(6), 697–699 (1994).
[CrossRef]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1083 (1993).
[CrossRef] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2227 (1992).
[CrossRef]

Hirai, A.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hong, F.-L.

Hussein, H.

Ilday, F. O.

Ilday, F. Ö.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[CrossRef]

Inaba, H.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, “Efficient frequency doubling of a femtosecond fiber laser,” Opt. Lett. 21(21), 1759–1761 (1996).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen, and H. A. Haus, “Optimization of filtering in soliton fiber lasers,” IEEE Photon. Technol. Lett. 6(12), 1433–1435 (1994).
[CrossRef]

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photon. Technol. Lett. 6(6), 697–699 (1994).
[CrossRef]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1083 (1993).
[CrossRef] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2227 (1992).
[CrossRef]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

Jørgensen, C. G.

Kim, S.

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

Kracht, D.

Leitenstorfer, A.

Lenz, G.

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Matas, V. J.

V. J. Matas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

Matsumoto, H.

Millot, G.

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Photonics 3, 597–603 (2007).

Minoshima, K.

Morgner, U.

Nelson, L. E.

Neumann, J.

Newbury, N. R.

Newson, T. P.

V. J. Matas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

Nicholson, J. W.

Oktem, B.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[CrossRef]

Onae, A.

Paschotta, R.

Payne, D. N.

V. J. Matas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

Prochnow, O.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[CrossRef]

Richardson, D. J.

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Photonics 3, 597–603 (2007).

V. J. Matas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

Ruehl, A.

Schibli, T. R.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Sosnowski, T.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Sugiura, T.

Takada, H.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

K. Tamura, E. P. Ippen, and H. A. Haus, “Optimization of filtering in soliton fiber lasers,” IEEE Photon. Technol. Lett. 6(12), 1433–1435 (1994).
[CrossRef]

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photon. Technol. Lett. 6(6), 697–699 (1994).
[CrossRef]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1083 (1993).
[CrossRef] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2227 (1992).
[CrossRef]

Tang, D. Y.

Tauser, F.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[CrossRef]

Wandt, D.

Washburn, B. R.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Wise, F. W.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[CrossRef]

J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30(14), 1888–1890 (2005).
[CrossRef] [PubMed]

Yan, M. F.

Ye, J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Yoshida, M.

Yost, D. C.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

Zhao, L. M.

Zinth, W.

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

Electron. Lett. (2)

V. J. Matas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2227 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Tamura, C. R. Doerr, H. A. Haus, and E. P. Ippen, “Soliton fiber ring laser stabilization and tuning with a broad intracavity filter,” IEEE Photon. Technol. Lett. 6(6), 697–699 (1994).
[CrossRef]

K. Tamura, E. P. Ippen, and H. A. Haus, “Optimization of filtering in soliton fiber lasers,” IEEE Photon. Technol. Lett. 6(12), 1433–1435 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[CrossRef]

Nat. Photonics (5)

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Photonics 3, 597–603 (2007).

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[CrossRef]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[CrossRef]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[CrossRef]

S.-W. Kim, “Metrology: Combs rule,” Nat. Photonics 3(6), 313–314 (2009).
[CrossRef]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (6)

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Other (1)

C. Senel, F. O. Ilday, O. Kara, C. Birlikseven, C. Erdogan, and R. Hamid, “All-normal-dispersion fiber lasers for frequency metrology,” paper CFM2, CLEO 2011 (Baltimore, MD, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

System layout of the hybrid mode-locked Er-doped fiber oscillator configured in this investigation. M: mirror, NPE: nonlinear polarization evolution, SA: saturable absorber, LD: laser diode, WDM: wavelength division multiplexer, SMF: single mode fiber, and EDF: erbium-doped fiber.

Fig. 2
Fig. 2

Spectral and temporal characteristics of generated femtosecond pulses. (a) Spectrum of the NPE-dominating mode showing Kelly side bands. The spectral bandwidth is measured 42 nm. (b) Interferometic and intensity auto-correlation of NPE-dominating 135 fs pulses (sech2, FWHM). The measured pedestal beat period agrees well with the Kelly side bands of Fig. 2(a). (c) Spectrum of the hybrid mode showing no noticeable side bands. The spectral bandwidth is 30 nm (d) Interferometric and intensity auto-correlation of hybrid-mode 146 fs pulses (sech2, FWHM).

Fig. 3
Fig. 3

Energy concentration of the mode-locked femtosecond pulses. (a) Accumulated pulse energy from the central peak of a pulse. (b) Normalized relative power concentration. More than 98.5% of the power is concentrated within 320 fs near the pulse peak in the hybrid mode-lock, compared to 94% in the NPE mode-lock case.

Fig. 4
Fig. 4

RF spectra of the repetition rate of femtosecond pulses. (a) Harmonic spectrum of the pulse repetition rate (RBW & VBW: 300 kHz). No noticeable sub-harmonics or spurious peaks are detected. (b) Linewidth measurement of the 20th harmonic of the repetition rate at ~1 GHz with 3 kHz RBW. (c) Measurement of the same linewidth with 10 Hz RBW. (d) Time trace of the stabilized repetition rate over a period of 2 hours. (e) RF beat notes with a narrow linewidth continuous-wave (cw) laser (RBW & VBW: 100 kHz).

Tables (1)

Tables Icon

Table 1 Power Characteristics of Two Distinct Modes Existing in the Hybrid Mode-locking

Metrics