Abstract

We present a polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure. The polarization-insensitive characteristic originates from the combined effect of the TM-polarized high-reflectivity high-index-contrast subwavelength grating and the TE-polarized metallic (Au) subwavelength grating with the addition of the insulator layer. The overlapped high reflectivity (>99.5%) bandwidth between the transverse electric polarization and the transverse magnetic polarization is 89 nm. This polarization-insensitive subwavelength grating reflector can be used in the applications without a preferred polarization.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett.67(6), 742–744 (1995).
    [CrossRef]
  2. R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett.35(14), 2472–2474 (2010).
    [CrossRef] [PubMed]
  3. P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett.18(1), 13–15 (2006).
    [CrossRef]
  4. Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express16(22), 17282–17287 (2008).
    [CrossRef] [PubMed]
  5. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
    [CrossRef]
  6. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18(12), 12606–12614 (2010).
    [CrossRef] [PubMed]
  7. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  8. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
    [CrossRef]
  9. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 mm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
    [CrossRef]
  10. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express16(5), 3456–3462 (2008).
    [CrossRef] [PubMed]
  11. M. Shokooh-Saremi and R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett.35(8), 1121–1123 (2010).
    [CrossRef] [PubMed]
  12. S. J. Schablitsky, L. Zhuang, R. C. Shi, and S. Y. Chou, “Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,” Appl. Phys. Lett.69(1), 7–9 (1996).
    [CrossRef]
  13. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
    [CrossRef]
  14. A. Haglund, S. J. Gustavsson, J. Vukusic, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarization stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett.41(14), 805–807 (2005).
    [CrossRef]
  15. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
    [CrossRef]
  16. S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
    [CrossRef]
  17. H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003).
    [CrossRef] [PubMed]
  18. C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express18(15), 15461–15466 (2010).
    [CrossRef] [PubMed]
  19. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express15(3), 1222–1227 (2007).
    [CrossRef] [PubMed]
  20. W. Hofmann, “Evolution of high-speed long-wavelengthvertical-cavity surface-emitting lasers,” Semicond. Sci. Technol.26(1), 014011 (2011).
    [CrossRef]
  21. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
    [CrossRef] [PubMed]
  22. W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photoniccrystal slab,” Appl. Phys. Lett.84(24), 4905–4907 (2004).
    [CrossRef]
  23. E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
    [CrossRef] [PubMed]
  24. H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
    [CrossRef]
  25. D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express19(10), 9050–9055 (2011).
    [CrossRef] [PubMed]
  26. S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprintlithography on flexible plastic substrate,” J. Vac. Sci. Technol. B25(6), 2388–2391 (2007).
    [CrossRef]
  27. F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
    [CrossRef] [PubMed]
  28. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
    [CrossRef] [PubMed]
  29. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
    [CrossRef]
  30. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express13(20), 7760–7771 (2005).
    [CrossRef]
  31. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
    [CrossRef]
  32. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
    [CrossRef] [PubMed]
  33. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express15(4), 1415–1427 (2007).
    [CrossRef] [PubMed]
  34. Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in onedimensional metallic gratings with broad slits,” Appl. Phys. Lett.93(6), 061102 (2008).
    [CrossRef]
  35. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planargrating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
    [CrossRef]
  36. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72(10), 1385–1392 (1982).
    [CrossRef]
  37. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24, 4493–4499 (1985).
  38. C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron.15(3), 869–878 (2009).
    [CrossRef]
  39. A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavitysurface-emitting laser,” Appl. Phys. Lett.94(19), 191105 (2009).
    [CrossRef]
  40. A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett.96(15), 151103 (2010).
    [CrossRef]

2011

W. Hofmann, “Evolution of high-speed long-wavelengthvertical-cavity surface-emitting lasers,” Semicond. Sci. Technol.26(1), 014011 (2011).
[CrossRef]

D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express19(10), 9050–9055 (2011).
[CrossRef] [PubMed]

2010

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett.35(14), 2472–2474 (2010).
[CrossRef] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18(12), 12606–12614 (2010).
[CrossRef] [PubMed]

M. Shokooh-Saremi and R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett.35(8), 1121–1123 (2010).
[CrossRef] [PubMed]

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express18(15), 15461–15466 (2010).
[CrossRef] [PubMed]

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett.96(15), 151103 (2010).
[CrossRef]

2009

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron.15(3), 869–878 (2009).
[CrossRef]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavitysurface-emitting laser,” Appl. Phys. Lett.94(19), 191105 (2009).
[CrossRef]

2008

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express16(5), 3456–3462 (2008).
[CrossRef] [PubMed]

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in onedimensional metallic gratings with broad slits,” Appl. Phys. Lett.93(6), 061102 (2008).
[CrossRef]

2007

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express15(4), 1415–1427 (2007).
[CrossRef] [PubMed]

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprintlithography on flexible plastic substrate,” J. Vac. Sci. Technol. B25(6), 2388–2391 (2007).
[CrossRef]

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
[CrossRef] [PubMed]

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express15(3), 1222–1227 (2007).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

2006

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett.18(1), 13–15 (2006).
[CrossRef]

2005

A. Haglund, S. J. Gustavsson, J. Vukusic, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarization stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett.41(14), 805–807 (2005).
[CrossRef]

D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express13(20), 7760–7771 (2005).
[CrossRef]

2004

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photoniccrystal slab,” Appl. Phys. Lett.84(24), 4905–4907 (2004).
[CrossRef]

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 mm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

2003

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003).
[CrossRef] [PubMed]

2002

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

1999

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

1998

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

1996

S. J. Schablitsky, L. Zhuang, R. C. Shi, and S. Y. Chou, “Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,” Appl. Phys. Lett.69(1), 7–9 (1996).
[CrossRef]

1995

S. Y. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett.67(6), 742–744 (1995).
[CrossRef]

1993

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

1985

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24, 4493–4499 (1985).

1982

M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72(10), 1385–1392 (1982).
[CrossRef]

1981

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planargrating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
[CrossRef]

Ahn, S. H.

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprintlithography on flexible plastic substrate,” J. Vac. Sci. Technol. B25(6), 2388–2391 (2007).
[CrossRef]

Alexander, R. W.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24, 4493–4499 (1985).

Baets, R.

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
[CrossRef] [PubMed]

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Bell, R. J.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24, 4493–4499 (1985).

Benbakir, B.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

Boons, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Boutami, S.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

Caekebeke, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

Chang, C.-W.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18(12), 12606–12614 (2010).
[CrossRef] [PubMed]

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express18(15), 15461–15466 (2010).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron.15(3), 869–878 (2009).
[CrossRef]

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express15(3), 1222–1227 (2007).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 mm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

Chase, C.

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express18(15), 15461–15466 (2010).
[CrossRef] [PubMed]

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18(12), 12606–12614 (2010).
[CrossRef] [PubMed]

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron.15(3), 869–878 (2009).
[CrossRef]

Cheben, P.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett.18(1), 13–15 (2006).
[CrossRef]

Chen, L.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 mm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Chen, S.-J.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
[CrossRef] [PubMed]

Chen, W.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett.96(15), 151103 (2010).
[CrossRef]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavitysurface-emitting laser,” Appl. Phys. Lett.94(19), 191105 (2009).
[CrossRef]

Chien, F.-C.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
[CrossRef] [PubMed]

Cho, M. H.

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in onedimensional metallic gratings with broad slits,” Appl. Phys. Lett.93(6), 061102 (2008).
[CrossRef]

Chou, S. Y.

S. J. Schablitsky, L. Zhuang, R. C. Shi, and S. Y. Chou, “Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,” Appl. Phys. Lett.69(1), 7–9 (1996).
[CrossRef]

S. Y. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett.67(6), 742–744 (1995).
[CrossRef]

Crouse, D.

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express15(4), 1415–1427 (2007).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express13(20), 7760–7771 (2005).
[CrossRef]

Daele, P. V.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Delâge, A.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett.18(1), 13–15 (2006).
[CrossRef]

Deng, W.

S. Y. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett.67(6), 742–744 (1995).
[CrossRef]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

Dhoedt, B.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Fan, S.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photoniccrystal slab,” Appl. Phys. Lett.84(24), 4905–4907 (2004).
[CrossRef]

Fan, T. Y.

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
[CrossRef] [PubMed]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Frankel, B.

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
[CrossRef] [PubMed]

Fritze, M.

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
[CrossRef] [PubMed]

Gao, D.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

García-Vidal, F. J.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Gaylord, T. K.

M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72(10), 1385–1392 (1982).
[CrossRef]

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planargrating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
[CrossRef]

Goeman, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Guo, L. J.

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprintlithography on flexible plastic substrate,” J. Vac. Sci. Technol. B25(6), 2388–2391 (2007).
[CrossRef]

Guo, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

Gustavsson, S. J.

A. Haglund, S. J. Gustavsson, J. Vukusic, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarization stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett.41(14), 805–807 (2005).
[CrossRef]

Haglund, A.

A. Haglund, S. J. Gustavsson, J. Vukusic, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarization stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett.41(14), 805–807 (2005).
[CrossRef]

Hao, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

Hattori, H. T.

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003).
[CrossRef] [PubMed]

Hofmann, W.

W. Hofmann, “Evolution of high-speed long-wavelengthvertical-cavity surface-emitting lasers,” Semicond. Sci. Technol.26(1), 014011 (2011).
[CrossRef]

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express18(15), 15461–15466 (2010).
[CrossRef] [PubMed]

Hoose, J.

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
[CrossRef] [PubMed]

Hou, J.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

Huang, M. C. Y.

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron.15(3), 869–878 (2009).
[CrossRef]

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express15(3), 1222–1227 (2007).
[CrossRef] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 mm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

Janz, S.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett.18(1), 13–15 (2006).
[CrossRef]

Jedrasik, P.

A. Haglund, S. J. Gustavsson, J. Vukusic, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarization stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett.41(14), 805–807 (2005).
[CrossRef]

Jiang, H.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

Johnson, E. G.

R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett.35(14), 2472–2474 (2010).
[CrossRef] [PubMed]

Karagodsky, V.

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18(12), 12606–12614 (2010).
[CrossRef] [PubMed]

Keast, C.

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
[CrossRef] [PubMed]

Kern, J.

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

Keshavareddy, P.

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express15(4), 1415–1427 (2007).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express13(20), 7760–7771 (2005).
[CrossRef]

Kilic, O.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

Kim, J.-S.

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprintlithography on flexible plastic substrate,” J. Vac. Sci. Technol. B25(6), 2388–2391 (2007).
[CrossRef]

Kim, S.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

Lamontagne, B.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett.18(1), 13–15 (2006).
[CrossRef]

Larsson, A.

A. Haglund, S. J. Gustavsson, J. Vukusic, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarization stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett.41(14), 805–807 (2005).
[CrossRef]

Leclercq, J. L.

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003).
[CrossRef] [PubMed]

Leclercq, J.-L.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

Lee, K.-L.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
[CrossRef] [PubMed]

Lee, Y. P.

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in onedimensional metallic gratings with broad slits,” Appl. Phys. Lett.93(6), 061102 (2008).
[CrossRef]

Letartre, X.

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003).
[CrossRef] [PubMed]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Lin, C.-Y.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
[CrossRef] [PubMed]

Liu, A.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett.96(15), 151103 (2010).
[CrossRef]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavitysurface-emitting laser,” Appl. Phys. Lett.94(19), 191105 (2009).
[CrossRef]

Long, L. L.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24, 4493–4499 (1985).

Lousse, V.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

Lu, F.

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18(12), 12606–12614 (2010).
[CrossRef] [PubMed]

Lu, Y.

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in onedimensional metallic gratings with broad slits,” Appl. Phys. Lett.93(6), 061102 (2008).
[CrossRef]

Ma, Z.

D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express19(10), 9050–9055 (2011).
[CrossRef] [PubMed]

Magnusson, R.

M. Shokooh-Saremi and R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett.35(8), 1121–1123 (2010).
[CrossRef] [PubMed]

R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett.35(14), 2472–2474 (2010).
[CrossRef] [PubMed]

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express16(5), 3456–3462 (2008).
[CrossRef] [PubMed]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 mm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Mo, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

Moewe, M.

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

Moharam, M. G.

M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72(10), 1385–1392 (1982).
[CrossRef]

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planargrating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
[CrossRef]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

Ordal, M. A.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24, 4493–4499 (1985).

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Popov, E.

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
[CrossRef] [PubMed]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Qu, H.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett.96(15), 151103 (2010).
[CrossRef]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavitysurface-emitting laser,” Appl. Phys. Lett.94(19), 191105 (2009).
[CrossRef]

Querry, M. R.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24, 4493–4499 (1985).

Rabe, S.

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
[CrossRef] [PubMed]

Rao, Y.

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express18(15), 15461–15466 (2010).
[CrossRef] [PubMed]

Rhee, J. Y.

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in onedimensional metallic gratings with broad slits,” Appl. Phys. Lett.93(6), 061102 (2008).
[CrossRef]

Rojo-Romeo, P.

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003).
[CrossRef] [PubMed]

Schablitsky, S. J.

S. J. Schablitsky, L. Zhuang, R. C. Shi, and S. Y. Chou, “Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,” Appl. Phys. Lett.69(1), 7–9 (1996).
[CrossRef]

Scheerlinck, S.

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
[CrossRef] [PubMed]

Schrauwen, J.

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
[CrossRef] [PubMed]

Seassal, C.

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003).
[CrossRef] [PubMed]

Sedgwick, F. G.

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18(12), 12606–12614 (2010).
[CrossRef] [PubMed]

Shi, R. C.

S. J. Schablitsky, L. Zhuang, R. C. Shi, and S. Y. Chou, “Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,” Appl. Phys. Lett.69(1), 7–9 (1996).
[CrossRef]

Shokooh-Saremi, M.

M. Shokooh-Saremi and R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett.35(8), 1121–1123 (2010).
[CrossRef] [PubMed]

R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett.35(14), 2472–2474 (2010).
[CrossRef] [PubMed]

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express16(5), 3456–3462 (2008).
[CrossRef] [PubMed]

Solgaard, O.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

Suh, W.

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photoniccrystal slab,” Appl. Phys. Lett.84(24), 4905–4907 (2004).
[CrossRef]

Sun, C.-C.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
[CrossRef] [PubMed]

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 mm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Taillaert, D.

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
[CrossRef] [PubMed]

Tanev, S.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett.18(1), 13–15 (2006).
[CrossRef]

Treacy, M. M. J.

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

Van Laere, F.

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
[CrossRef] [PubMed]

Van Thourhout, D.

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
[CrossRef] [PubMed]

Vandeputte, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

Viktorovitch, P.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003).
[CrossRef] [PubMed]

Vukusic, J.

A. Haglund, S. J. Gustavsson, J. Vukusic, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarization stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett.41(14), 805–807 (2005).
[CrossRef]

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

Wei, P.-K.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
[CrossRef] [PubMed]

Wu, H.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

Wu, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

Xing, M.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett.96(15), 151103 (2010).
[CrossRef]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavitysurface-emitting laser,” Appl. Phys. Lett.94(19), 191105 (2009).
[CrossRef]

Xu, D.-X.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett.18(1), 13–15 (2006).
[CrossRef]

Yang, H.

D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express19(10), 9050–9055 (2011).
[CrossRef] [PubMed]

Yih, J.-N.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
[CrossRef] [PubMed]

Yost, D.

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
[CrossRef] [PubMed]

Zhao, D.

D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express19(10), 9050–9055 (2011).
[CrossRef] [PubMed]

Zheng, W.

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett.96(15), 151103 (2010).
[CrossRef]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavitysurface-emitting laser,” Appl. Phys. Lett.94(19), 191105 (2009).
[CrossRef]

Zhou, W.

D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express19(10), 9050–9055 (2011).
[CrossRef] [PubMed]

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett.96(15), 151103 (2010).
[CrossRef]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavitysurface-emitting laser,” Appl. Phys. Lett.94(19), 191105 (2009).
[CrossRef]

Zhou, Y.

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron.15(3), 869–878 (2009).
[CrossRef]

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express15(3), 1222–1227 (2007).
[CrossRef] [PubMed]

Zhou, Z.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

Zhuang, L.

S. J. Schablitsky, L. Zhuang, R. C. Shi, and S. Y. Chou, “Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,” Appl. Phys. Lett.69(1), 7–9 (1996).
[CrossRef]

Appl. Opt.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24, 4493–4499 (1985).

Appl. Phys. Lett.

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in onedimensional metallic gratings with broad slits,” Appl. Phys. Lett.93(6), 061102 (2008).
[CrossRef]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photoniccrystal slab,” Appl. Phys. Lett.84(24), 4905–4907 (2004).
[CrossRef]

S. Y. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett.67(6), 742–744 (1995).
[CrossRef]

S. J. Schablitsky, L. Zhuang, R. C. Shi, and S. Y. Chou, “Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,” Appl. Phys. Lett.69(1), 7–9 (1996).
[CrossRef]

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007).
[CrossRef]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavitysurface-emitting laser,” Appl. Phys. Lett.94(19), 191105 (2009).
[CrossRef]

A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett.96(15), 151103 (2010).
[CrossRef]

Biosens. Bioelectron.

F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007).
[CrossRef] [PubMed]

Electron. Lett.

A. Haglund, S. J. Gustavsson, J. Vukusic, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarization stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett.41(14), 805–807 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron.15(3), 869–878 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998).
[CrossRef]

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett.18(1), 13–15 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 mm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

J. Opt.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010).
[CrossRef]

J. Opt. Soc. Am.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planargrating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
[CrossRef]

M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72(10), 1385–1392 (1982).
[CrossRef]

J. Vac. Sci. Technol. B

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprintlithography on flexible plastic substrate,” J. Vac. Sci. Technol. B25(6), 2388–2391 (2007).
[CrossRef]

Nat. Photonics

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010).
[CrossRef]

Opt. Express

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18(12), 12606–12614 (2010).
[CrossRef] [PubMed]

H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003).
[CrossRef] [PubMed]

C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express18(15), 15461–15466 (2010).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express15(3), 1222–1227 (2007).
[CrossRef] [PubMed]

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express16(5), 3456–3462 (2008).
[CrossRef] [PubMed]

Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express16(22), 17282–17287 (2008).
[CrossRef] [PubMed]

E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004).
[CrossRef] [PubMed]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express19(10), 9050–9055 (2011).
[CrossRef] [PubMed]

S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express13(20), 7760–7771 (2005).
[CrossRef]

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express15(4), 1415–1427 (2007).
[CrossRef] [PubMed]

Opt. Lett.

R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett.35(14), 2472–2474 (2010).
[CrossRef] [PubMed]

M. Shokooh-Saremi and R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett.35(8), 1121–1123 (2010).
[CrossRef] [PubMed]

Phys. Rev. B

M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

Phys. Rev. Lett.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999).
[CrossRef]

Semicond. Sci. Technol.

W. Hofmann, “Evolution of high-speed long-wavelengthvertical-cavity surface-emitting lasers,” Semicond. Sci. Technol.26(1), 014011 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics