Abstract

We experimentally investigate the performance of a low-complexity non-iterative phase noise induced inter-carrier interference (ICI) compensation algorithm in reduced-guard-interval dual-polarization coherent-optical orthogonal-frequency-division-multiplexing (RGI-DP-CO-OFDM) transport systems. This interpolation-based ICI compensator estimates the time-domain phase noise samples by a linear interpolation between the CPE estimates of the consecutive OFDM symbols. We experimentally study the performance of this scheme for a 28 Gbaud QPSK RGI-DP-CO-OFDM employing a low cost distributed feedback (DFB) laser. Experimental results using a DFB laser with the linewidth of 2.6 MHz demonstrate 24% and 13% improvement in transmission reach with respect to the conventional equalizer (CE) in presence of weak and strong dispersion-enhanced-phase-noise (DEPN), respectively. A brief analysis of the computational complexity of this scheme in terms of the number of required complex multiplications is provided. This practical approach does not suffer from error propagation while enjoying low computational complexity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  2. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express16(26), 21944–21957 (2008).
    [CrossRef] [PubMed]
  3. F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: a promising high-speed optical transport technology,” Bell Syst. Tech. J.14, 127–148 (2009).
  4. S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” J. Opt. Fiber Technol.15(5-6), 407–413 (2009).
    [CrossRef]
  5. S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tankada, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
    [CrossRef]
  6. M. E. Mousa-Pasandi and D. V. Plant, “Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM,” Opt. Express18(20), 20651–20660 (2010).
    [CrossRef] [PubMed]
  7. C. Yang, F. Yang, and Z. Wang, “Orthogonal basis expansion-based phase noise estimation and suppression for CO-OFDM systems,” IEEE Photon. Technol. Lett.22(1), 51–53 (2010).
    [CrossRef]
  8. Q. Zou, A. Tarighat, and A. H. Sayed, “Compensation of phase noise in OFDM wireless systems,” IEEE Trans. Signal Process.55(11), 5407–5424 (2007).
    [CrossRef]
  9. L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun.46(5), 580–583 (1998).
    [CrossRef]
  10. Y. Mostofi and D. C. Cox, “ICI mitigation for pilot-aided OFDM mobile systems,” IEEE Trans. Wirel. Comm.4(2), 765–774 (2005).
    [CrossRef]
  11. Q. Zhuge, C. Chen, and D. V. Plant, “Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission,” Opt. Express19(5), 4472–4484 (2011).
    [CrossRef] [PubMed]
  12. M. E. Mousa-Pasandi and D. V. Plant, “Non-iterative interpolation-based partial phase noise ICI mitigation for CO-OFDM transport systems,” IEEE Photon. Technol. Lett.23(21), 1594–1596 (2011).
    [CrossRef]
  13. M. E. Mousa Pasandi and D. V. Plant, “Non-iterative interpolation-based phase noise ICI mitigation for CO-OFDM transport systems,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPMB6.
  14. P. Rabiei, W. Namgoong, and N. Al-Dhahir, “A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems,” IEEE Trans. Signal Process.58(11), 5945–5950 (2010).
    [CrossRef]
  15. K. Kikuchi and K. Igarashi, “Characterization of semiconductor-laser phase noise with digital coherent receivers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OML3.
  16. X. Chen, A. Al Amin, and W. Shieh, “Characterization and monitoring of laser linewidths in coherent systems,” J. Lightwave Technol.29(17), 2533–2537 (2011).
    [CrossRef]
  17. Q. Zhuge, M. E. Mousa-Pasandi, M. Morsy-Osman, X. Xu, M. Chagnon, and Z. A. El-Sahn,‎ and D. V. Plant, “Demonstration of dispersion-enhanced phase noise in RGI CO-OFDM systems,” IEEE Photon. Technol. Lett. ((submitted to).
  18. B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1180–1192 (2010).
    [CrossRef]

2011 (3)

Q. Zhuge, C. Chen, and D. V. Plant, “Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission,” Opt. Express19(5), 4472–4484 (2011).
[CrossRef] [PubMed]

M. E. Mousa-Pasandi and D. V. Plant, “Non-iterative interpolation-based partial phase noise ICI mitigation for CO-OFDM transport systems,” IEEE Photon. Technol. Lett.23(21), 1594–1596 (2011).
[CrossRef]

X. Chen, A. Al Amin, and W. Shieh, “Characterization and monitoring of laser linewidths in coherent systems,” J. Lightwave Technol.29(17), 2533–2537 (2011).
[CrossRef]

2010 (4)

B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1180–1192 (2010).
[CrossRef]

P. Rabiei, W. Namgoong, and N. Al-Dhahir, “A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems,” IEEE Trans. Signal Process.58(11), 5945–5950 (2010).
[CrossRef]

M. E. Mousa-Pasandi and D. V. Plant, “Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM,” Opt. Express18(20), 20651–20660 (2010).
[CrossRef] [PubMed]

C. Yang, F. Yang, and Z. Wang, “Orthogonal basis expansion-based phase noise estimation and suppression for CO-OFDM systems,” IEEE Photon. Technol. Lett.22(1), 51–53 (2010).
[CrossRef]

2009 (2)

F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: a promising high-speed optical transport technology,” Bell Syst. Tech. J.14, 127–148 (2009).

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” J. Opt. Fiber Technol.15(5-6), 407–413 (2009).
[CrossRef]

2008 (3)

S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tankada, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
[CrossRef]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
[CrossRef] [PubMed]

X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express16(26), 21944–21957 (2008).
[CrossRef] [PubMed]

2007 (1)

Q. Zou, A. Tarighat, and A. H. Sayed, “Compensation of phase noise in OFDM wireless systems,” IEEE Trans. Signal Process.55(11), 5407–5424 (2007).
[CrossRef]

2005 (1)

Y. Mostofi and D. C. Cox, “ICI mitigation for pilot-aided OFDM mobile systems,” IEEE Trans. Wirel. Comm.4(2), 765–774 (2005).
[CrossRef]

1998 (1)

L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun.46(5), 580–583 (1998).
[CrossRef]

Al Amin, A.

X. Chen, A. Al Amin, and W. Shieh, “Characterization and monitoring of laser linewidths in coherent systems,” J. Lightwave Technol.29(17), 2533–2537 (2011).
[CrossRef]

Al-Dhahir, N.

P. Rabiei, W. Namgoong, and N. Al-Dhahir, “A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems,” IEEE Trans. Signal Process.58(11), 5945–5950 (2010).
[CrossRef]

Bao, H.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
[CrossRef] [PubMed]

Buchali, F.

F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: a promising high-speed optical transport technology,” Bell Syst. Tech. J.14, 127–148 (2009).

X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express16(26), 21944–21957 (2008).
[CrossRef] [PubMed]

Chagnon, M.

Q. Zhuge, M. E. Mousa-Pasandi, M. Morsy-Osman, X. Xu, M. Chagnon, and Z. A. El-Sahn,‎ and D. V. Plant, “Demonstration of dispersion-enhanced phase noise in RGI CO-OFDM systems,” IEEE Photon. Technol. Lett. ((submitted to).

Chen, C.

Q. Zhuge, C. Chen, and D. V. Plant, “Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission,” Opt. Express19(5), 4472–4484 (2011).
[CrossRef] [PubMed]

Chen, X.

X. Chen, A. Al Amin, and W. Shieh, “Characterization and monitoring of laser linewidths in coherent systems,” J. Lightwave Technol.29(17), 2533–2537 (2011).
[CrossRef]

Cox, D. C.

Y. Mostofi and D. C. Cox, “ICI mitigation for pilot-aided OFDM mobile systems,” IEEE Trans. Wirel. Comm.4(2), 765–774 (2005).
[CrossRef]

Dischler, R.

F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: a promising high-speed optical transport technology,” Bell Syst. Tech. J.14, 127–148 (2009).

El-Sahn, Z. A.

Q. Zhuge, M. E. Mousa-Pasandi, M. Morsy-Osman, X. Xu, M. Chagnon, and Z. A. El-Sahn,‎ and D. V. Plant, “Demonstration of dispersion-enhanced phase noise in RGI CO-OFDM systems,” IEEE Photon. Technol. Lett. ((submitted to).

Jansen, S. L.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” J. Opt. Fiber Technol.15(5-6), 407–413 (2009).
[CrossRef]

S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tankada, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
[CrossRef]

Liu, X.

F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: a promising high-speed optical transport technology,” Bell Syst. Tech. J.14, 127–148 (2009).

X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express16(26), 21944–21957 (2008).
[CrossRef] [PubMed]

Morita, I.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” J. Opt. Fiber Technol.15(5-6), 407–413 (2009).
[CrossRef]

S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tankada, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
[CrossRef]

Morsy-Osman, M.

Q. Zhuge, M. E. Mousa-Pasandi, M. Morsy-Osman, X. Xu, M. Chagnon, and Z. A. El-Sahn,‎ and D. V. Plant, “Demonstration of dispersion-enhanced phase noise in RGI CO-OFDM systems,” IEEE Photon. Technol. Lett. ((submitted to).

Mostofi, Y.

Y. Mostofi and D. C. Cox, “ICI mitigation for pilot-aided OFDM mobile systems,” IEEE Trans. Wirel. Comm.4(2), 765–774 (2005).
[CrossRef]

Mousa-Pasandi, M. E.

M. E. Mousa-Pasandi and D. V. Plant, “Non-iterative interpolation-based partial phase noise ICI mitigation for CO-OFDM transport systems,” IEEE Photon. Technol. Lett.23(21), 1594–1596 (2011).
[CrossRef]

M. E. Mousa-Pasandi and D. V. Plant, “Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM,” Opt. Express18(20), 20651–20660 (2010).
[CrossRef] [PubMed]

Q. Zhuge, M. E. Mousa-Pasandi, M. Morsy-Osman, X. Xu, M. Chagnon, and Z. A. El-Sahn,‎ and D. V. Plant, “Demonstration of dispersion-enhanced phase noise in RGI CO-OFDM systems,” IEEE Photon. Technol. Lett. ((submitted to).

Namgoong, W.

P. Rabiei, W. Namgoong, and N. Al-Dhahir, “A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems,” IEEE Trans. Signal Process.58(11), 5945–5950 (2010).
[CrossRef]

Plant, D. V.

M. E. Mousa-Pasandi and D. V. Plant, “Non-iterative interpolation-based partial phase noise ICI mitigation for CO-OFDM transport systems,” IEEE Photon. Technol. Lett.23(21), 1594–1596 (2011).
[CrossRef]

Q. Zhuge, C. Chen, and D. V. Plant, “Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission,” Opt. Express19(5), 4472–4484 (2011).
[CrossRef] [PubMed]

M. E. Mousa-Pasandi and D. V. Plant, “Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM,” Opt. Express18(20), 20651–20660 (2010).
[CrossRef] [PubMed]

Rabiei, P.

P. Rabiei, W. Namgoong, and N. Al-Dhahir, “A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems,” IEEE Trans. Signal Process.58(11), 5945–5950 (2010).
[CrossRef]

Randel, S.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” J. Opt. Fiber Technol.15(5-6), 407–413 (2009).
[CrossRef]

Sayed, A. H.

Q. Zou, A. Tarighat, and A. H. Sayed, “Compensation of phase noise in OFDM wireless systems,” IEEE Trans. Signal Process.55(11), 5407–5424 (2007).
[CrossRef]

Schenk, T.

S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tankada, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
[CrossRef]

Shieh, W.

X. Chen, A. Al Amin, and W. Shieh, “Characterization and monitoring of laser linewidths in coherent systems,” J. Lightwave Technol.29(17), 2533–2537 (2011).
[CrossRef]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
[CrossRef] [PubMed]

Spinnler, B.

B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1180–1192 (2010).
[CrossRef]

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” J. Opt. Fiber Technol.15(5-6), 407–413 (2009).
[CrossRef]

Takeda, N.

S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tankada, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
[CrossRef]

Tanaka, H.

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” J. Opt. Fiber Technol.15(5-6), 407–413 (2009).
[CrossRef]

Tang, Y.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
[CrossRef] [PubMed]

Tankada, H.

S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tankada, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
[CrossRef]

Tarighat, A.

Q. Zou, A. Tarighat, and A. H. Sayed, “Compensation of phase noise in OFDM wireless systems,” IEEE Trans. Signal Process.55(11), 5407–5424 (2007).
[CrossRef]

Tomba, L.

L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun.46(5), 580–583 (1998).
[CrossRef]

Wang, Z.

C. Yang, F. Yang, and Z. Wang, “Orthogonal basis expansion-based phase noise estimation and suppression for CO-OFDM systems,” IEEE Photon. Technol. Lett.22(1), 51–53 (2010).
[CrossRef]

Xu, X.

Q. Zhuge, M. E. Mousa-Pasandi, M. Morsy-Osman, X. Xu, M. Chagnon, and Z. A. El-Sahn,‎ and D. V. Plant, “Demonstration of dispersion-enhanced phase noise in RGI CO-OFDM systems,” IEEE Photon. Technol. Lett. ((submitted to).

Yang, C.

C. Yang, F. Yang, and Z. Wang, “Orthogonal basis expansion-based phase noise estimation and suppression for CO-OFDM systems,” IEEE Photon. Technol. Lett.22(1), 51–53 (2010).
[CrossRef]

Yang, F.

C. Yang, F. Yang, and Z. Wang, “Orthogonal basis expansion-based phase noise estimation and suppression for CO-OFDM systems,” IEEE Photon. Technol. Lett.22(1), 51–53 (2010).
[CrossRef]

Zhuge, Q.

Q. Zhuge, C. Chen, and D. V. Plant, “Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission,” Opt. Express19(5), 4472–4484 (2011).
[CrossRef] [PubMed]

Q. Zhuge, M. E. Mousa-Pasandi, M. Morsy-Osman, X. Xu, M. Chagnon, and Z. A. El-Sahn,‎ and D. V. Plant, “Demonstration of dispersion-enhanced phase noise in RGI CO-OFDM systems,” IEEE Photon. Technol. Lett. ((submitted to).

Zou, Q.

Q. Zou, A. Tarighat, and A. H. Sayed, “Compensation of phase noise in OFDM wireless systems,” IEEE Trans. Signal Process.55(11), 5407–5424 (2007).
[CrossRef]

Bell Syst. Tech. J. (1)

F. Buchali, R. Dischler, and X. Liu, “Optical OFDM: a promising high-speed optical transport technology,” Bell Syst. Tech. J.14, 127–148 (2009).

IEEE J. Sel. Top. Quantum Electron. (1)

B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1180–1192 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. Yang, F. Yang, and Z. Wang, “Orthogonal basis expansion-based phase noise estimation and suppression for CO-OFDM systems,” IEEE Photon. Technol. Lett.22(1), 51–53 (2010).
[CrossRef]

M. E. Mousa-Pasandi and D. V. Plant, “Non-iterative interpolation-based partial phase noise ICI mitigation for CO-OFDM transport systems,” IEEE Photon. Technol. Lett.23(21), 1594–1596 (2011).
[CrossRef]

Q. Zhuge, M. E. Mousa-Pasandi, M. Morsy-Osman, X. Xu, M. Chagnon, and Z. A. El-Sahn,‎ and D. V. Plant, “Demonstration of dispersion-enhanced phase noise in RGI CO-OFDM systems,” IEEE Photon. Technol. Lett. ((submitted to).

IEEE Trans. Commun. (1)

L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun.46(5), 580–583 (1998).
[CrossRef]

IEEE Trans. Signal Process. (2)

P. Rabiei, W. Namgoong, and N. Al-Dhahir, “A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems,” IEEE Trans. Signal Process.58(11), 5945–5950 (2010).
[CrossRef]

Q. Zou, A. Tarighat, and A. H. Sayed, “Compensation of phase noise in OFDM wireless systems,” IEEE Trans. Signal Process.55(11), 5407–5424 (2007).
[CrossRef]

IEEE Trans. Wirel. Comm. (1)

Y. Mostofi and D. C. Cox, “ICI mitigation for pilot-aided OFDM mobile systems,” IEEE Trans. Wirel. Comm.4(2), 765–774 (2005).
[CrossRef]

J. Lightwave Technol. (2)

X. Chen, A. Al Amin, and W. Shieh, “Characterization and monitoring of laser linewidths in coherent systems,” J. Lightwave Technol.29(17), 2533–2537 (2011).
[CrossRef]

S. L. Jansen, I. Morita, T. Schenk, N. Takeda, and H. Tankada, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
[CrossRef]

J. Opt. Fiber Technol. (1)

S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” J. Opt. Fiber Technol.15(5-6), 407–413 (2009).
[CrossRef]

Opt. Express (4)

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
[CrossRef] [PubMed]

X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express16(26), 21944–21957 (2008).
[CrossRef] [PubMed]

M. E. Mousa-Pasandi and D. V. Plant, “Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM,” Opt. Express18(20), 20651–20660 (2010).
[CrossRef] [PubMed]

Q. Zhuge, C. Chen, and D. V. Plant, “Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission,” Opt. Express19(5), 4472–4484 (2011).
[CrossRef] [PubMed]

Other (2)

M. E. Mousa Pasandi and D. V. Plant, “Non-iterative interpolation-based phase noise ICI mitigation for CO-OFDM transport systems,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPMB6.

K. Kikuchi and K. Igarashi, “Characterization of semiconductor-laser phase noise with digital coherent receivers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OML3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

RGI-DP-CO-OFDM experimental setup.

Fig. 2
Fig. 2

BER versus OSNR for different ICI estimation harmonics. The DFB laser is employed at the transmitter.

Fig. 3
Fig. 3

BER versus OSNR for different ICI estimation harmonics. The DFB laser is employed at the receiver.

Fig. 4
Fig. 4

BER versus distance where the DFB laser is employed at the transmitter (weak DEPN).

Fig. 5
Fig. 5

BER versus distance where the DFB laser is employed at the receiver (strong DEPN).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r k m = q=0 N1 p kq m h q x q m + w k m = p 0 m h k x k m + q=0,qk N1 p kq m h q x q m + w k m
CP E m = p 0 m =angle{ r k m ×conj( h k x k m ) } kPSC
x ^ k m = ( l= Q /2 Q/2 conj( p ^ l i )× r kl m ) / h ^ k
C CE = N 1 ( log 2 ( N 1 )+1 ) n MC ( N 1 N CD +1 ) log 2 ( M ) + n MC log 2 ( N 2 )+2+ 5 N CE R CE log 2 ( M )
C ICI = N 1 ( log 2 ( N 1 )+1 ) n MC ( N 1 N CD +1 ) log 2 ( M ) + n MC log 2 ( N 2 )+2+ 5 N CE R CE log 2 ( M ) + Q N 2 ( 1 R CE ) / n MC + N 3 log 2 ( N 3 ) N 2 log 2 ( M ) = C CE + Q N 2 ( 1 R CE ) / n MC + N 3 log 2 ( N 3 ) /2 N 2 log 2 ( M )

Metrics