Abstract

We report a novel approach for deposition of amorphous chalcogenide glass films inside the cylindrical air channels of photonic crystal fiber (PCF). In particular, we demonstrate the formation of nanocolloidal solution-based As2S3 films inside the air channels of PCFs of different glass-solvent concentrations for two fibers with cladding-hole diameter 3.5 and 1.3μm. Scanning electron microscopy is used to observe the formed chalcogenide layers and Raman scattering is employed to verify the existence and the structural features of the amorphous As2S3 layers. Optical transmission measurements reveal strong photonic bandgaps over a range covering visible and near-infrared wavelengths. The transmittance spectra and the corresponding losses were recorded in the wavelength range 500–1750 nm. The main advantage of the proposed technique is the simplicity of the deposition of amorphous chalcogenide layers inside the holes of PCF and constitutes an efficient route to the development of fiber-based devices combined with sophisticated glasses for supercontinuum generation as well as other non-linear applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
    [CrossRef]
  3. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
    [CrossRef] [PubMed]
  4. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  5. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
    [CrossRef]
  6. A. Zakery and S. R. Elliott, Optical nonlinearities in chalcogenide glasses and their applications (Berlin, Springer, 2007).
  7. F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
    [CrossRef]
  8. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999).
    [CrossRef]
  9. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
    [CrossRef]
  10. S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, “Composition-dependent photosensitivity in As-S glasses induced by bandgap light: Structural origin by Raman scattering,” Opt. Lett.36(4), 534–536 (2011).
    [CrossRef] [PubMed]
  11. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  12. C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
    [CrossRef]
  13. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
    [CrossRef] [PubMed]
  14. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15(16), 10324–10329 (2007).
    [CrossRef] [PubMed]
  15. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
    [CrossRef] [PubMed]
  16. F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
    [CrossRef]
  17. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
    [CrossRef] [PubMed]
  18. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  19. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
    [CrossRef] [PubMed]
  20. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
    [CrossRef] [PubMed]
  21. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011).
    [CrossRef] [PubMed]
  22. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
    [CrossRef] [PubMed]
  23. C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express18(23), 24344–24351 (2010).
    [CrossRef] [PubMed]
  24. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstrucutred optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
    [CrossRef]
  25. A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010).
    [CrossRef] [PubMed]
  26. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
    [CrossRef]
  27. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
    [CrossRef] [PubMed]
  28. C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010).
    [CrossRef] [PubMed]
  29. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
    [CrossRef] [PubMed]
  30. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
    [CrossRef] [PubMed]
  31. D. J. Milliron, S. Raoux, R. M. Shelby, and J. Jordan-Sweet, “Solution-phase deposition and nanopatterning of GeSbSe phase-change materials,” Nat. Mater.6(5), 352–356 (2007).
    [CrossRef] [PubMed]
  32. T. A. Guiton and C. G. Pantano, “Solution/gelation of arsenic trisulfide in amine solvents,” Chem. Mater.1(5), 558–563 (1989).
    [CrossRef]
  33. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express18(6), 5472–5480 (2010).
    [CrossRef] [PubMed]
  34. K. S. Andrikopoulos, A. G. Kalampounias, and S. N. Yannopoulos, “Rounding effects on doped sulfur’s living polymerization: The case of As and Se,” Phys. Rev. B72(1), 014203 (2005).
    [CrossRef]
  35. G. C. Chern and I. Lauks, “Spin coated amorphous chalcogenide films: Structural characterization,” J. Appl. Phys.54(5), 2701–2705 (1983).
    [CrossRef]
  36. R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B8(2), 756–768 (1973).
    [CrossRef]
  37. T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys.103(6), 063511 (2008).
    [CrossRef]
  38. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
    [CrossRef] [PubMed]
  39. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004).
    [CrossRef] [PubMed]

2011

S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, “Composition-dependent photosensitivity in As-S glasses induced by bandgap light: Structural origin by Raman scattering,” Opt. Lett.36(4), 534–536 (2011).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
[CrossRef] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

2010

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010).
[CrossRef] [PubMed]

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express18(23), 24344–24351 (2010).
[CrossRef] [PubMed]

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010).
[CrossRef] [PubMed]

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express18(6), 5472–5480 (2010).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

2009

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
[CrossRef]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

2008

T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys.103(6), 063511 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

2007

D. J. Milliron, S. Raoux, R. M. Shelby, and J. Jordan-Sweet, “Solution-phase deposition and nanopatterning of GeSbSe phase-change materials,” Nat. Mater.6(5), 352–356 (2007).
[CrossRef] [PubMed]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
[CrossRef] [PubMed]

2006

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

2005

K. S. Andrikopoulos, A. G. Kalampounias, and S. N. Yannopoulos, “Rounding effects on doped sulfur’s living polymerization: The case of As and Se,” Phys. Rev. B72(1), 014203 (2005).
[CrossRef]

2004

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

2003

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

2002

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

2001

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

2000

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstrucutred optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

1999

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999).
[CrossRef]

1998

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

1996

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

1995

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
[CrossRef]

1989

T. A. Guiton and C. G. Pantano, “Solution/gelation of arsenic trisulfide in amine solvents,” Chem. Mater.1(5), 558–563 (1989).
[CrossRef]

1983

G. C. Chern and I. Lauks, “Spin coated amorphous chalcogenide films: Structural characterization,” J. Appl. Phys.54(5), 2701–2705 (1983).
[CrossRef]

1973

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B8(2), 756–768 (1973).
[CrossRef]

Abeeluck, A. K.

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

Adam, A. J.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Adam, J. L.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

Adam, J.-L.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Agarwal, A.

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

Aggarwal, I. D.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999).
[CrossRef]

Alkeskjold, T. T.

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

Andrikopoulos, K. S.

K. S. Andrikopoulos, A. G. Kalampounias, and S. N. Yannopoulos, “Rounding effects on doped sulfur’s living polymerization: The case of As and Se,” Phys. Rev. B72(1), 014203 (2005).
[CrossRef]

Argyros, A.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Arnold, C. B.

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010).
[CrossRef] [PubMed]

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express18(6), 5472–5480 (2010).
[CrossRef] [PubMed]

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

Atkin, D. M.

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Bang, O.

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

Barthélémy, A.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Bassett, I.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Bennet, F. H.

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
[CrossRef] [PubMed]

Birks, T. A.

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Bjarklev, A.

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Boussard-Pledel, C.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

Brilland, L.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Broeng, J.

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Burdge, G. L.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstrucutred optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

Bureau, B.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

Candiani, A.

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010).
[CrossRef] [PubMed]

Carlie, N.

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

Chartier, T.

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Chern, G. C.

G. C. Chern and I. Lauks, “Spin coated amorphous chalcogenide films: Structural characterization,” J. Appl. Phys.54(5), 2701–2705 (1983).
[CrossRef]

Chochliouros, I. P.

S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, “Composition-dependent photosensitivity in As-S glasses induced by bandgap light: Structural origin by Raman scattering,” Opt. Lett.36(4), 534–536 (2011).
[CrossRef] [PubMed]

Chrissanthopoulos, A.

T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys.103(6), 063511 (2008).
[CrossRef]

Conseil, C.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

Coulombier, Q.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

De Angelis, C.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

de Sterke, C.

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

de Sterke, C. M.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Désévédavy, F.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Dua, J.

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express18(6), 5472–5480 (2010).
[CrossRef] [PubMed]

Dufva, M.

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

Dunn, S.

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

Eggleton, B.

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
[CrossRef]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstrucutred optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

El-Amraoui, M.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Elliott, S. R.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
[CrossRef]

Fatome, J.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Fleming, S.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Fortier, C.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Frumar, M.

T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys.103(6), 063511 (2008).
[CrossRef]

Fu, L. B.

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

Gadret, G.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Gao, W.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Gmachl, C. F.

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

Granzow, N.

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
[CrossRef] [PubMed]

Guiton, T. A.

T. A. Guiton and C. G. Pantano, “Solution/gelation of arsenic trisulfide in amine solvents,” Chem. Mater.1(5), 558–563 (1989).
[CrossRef]

Hale, A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstrucutred optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

Headley, C.

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

Hermann, D.

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Høiby, P. E.

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

Houizot, P.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Hu, J.

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

Issa, N. A.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Jensen, J. B.

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

Jepsen, P. U.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Jordan-Sweet, J.

D. J. Milliron, S. Raoux, R. M. Shelby, and J. Jordan-Sweet, “Solution-phase deposition and nanopatterning of GeSbSe phase-change materials,” Nat. Mater.6(5), 352–356 (2007).
[CrossRef] [PubMed]

Jules, J. C.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Kakarantzas, G.

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express18(23), 24344–24351 (2010).
[CrossRef] [PubMed]

Kalampounias, A. G.

K. S. Andrikopoulos, A. G. Kalampounias, and S. N. Yannopoulos, “Rounding effects on doped sulfur’s living polymerization: The case of As and Se,” Phys. Rev. B72(1), 014203 (2005).
[CrossRef]

Kimerling, L.

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

Kivshar, Y. S.

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
[CrossRef] [PubMed]

Knight, J. C.

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Kobliska, R. J.

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B8(2), 756–768 (1973).
[CrossRef]

Kohoutek, T.

T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys.103(6), 063511 (2008).
[CrossRef]

Kolobov, A.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
[CrossRef]

Konstantaki, M.

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010).
[CrossRef] [PubMed]

Kostadinova, O.

T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys.103(6), 063511 (2008).
[CrossRef]

Krolikowski, W.

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
[CrossRef] [PubMed]

Kuhlmey, B. T.

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
[CrossRef]

Kyriazis, F.

S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, “Composition-dependent photosensitivity in As-S glasses induced by bandgap light: Structural origin by Raman scattering,” Opt. Lett.36(4), 534–536 (2011).
[CrossRef] [PubMed]

Lamont, M. R.

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

Large, M. C. J.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Larsen, T.

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

Lauks, I.

G. C. Chern and I. Lauks, “Spin coated amorphous chalcogenide films: Structural characterization,” J. Appl. Phys.54(5), 2701–2705 (1983).
[CrossRef]

Lee, H. W.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

LeNeindre, L.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Litchinitser, N.

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

Litchinitser, N. M.

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

Lucas, J.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Madsen, C. K.

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

Mägi, E. C.

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

Manos, S.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Margulis, W.

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010).
[CrossRef] [PubMed]

Markos, C.

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express18(23), 24344–24351 (2010).
[CrossRef] [PubMed]

McPhedran, R.

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

McPhedran, R. C.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Mechin, D.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

Messaddeq, Y.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Milliron, D. J.

D. J. Milliron, S. Raoux, R. M. Shelby, and J. Jordan-Sweet, “Solution-phase deposition and nanopatterning of GeSbSe phase-change materials,” Nat. Mater.6(5), 352–356 (2007).
[CrossRef] [PubMed]

Monro, T. M.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Monteville, A.

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Mujagic, E.

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

Neshev, D. N.

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
[CrossRef] [PubMed]

Nguyen, H. C.

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

Nguyen, T.

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Nicorovici, N. A. P.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Nielsen, K.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Ohishi, Y.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Pantano, C. G.

T. A. Guiton and C. G. Pantano, “Solution/gelation of arsenic trisulfide in amine solvents,” Chem. Mater.1(5), 558–563 (1989).
[CrossRef]

Pedersen, L. H.

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

Petit, L.

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

Pissadakis, S.

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010).
[CrossRef] [PubMed]

Planken, P. C.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Quémard, C.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Raoux, S.

D. J. Milliron, S. Raoux, R. M. Shelby, and J. Jordan-Sweet, “Solution-phase deposition and nanopatterning of GeSbSe phase-change materials,” Nat. Mater.6(5), 352–356 (2007).
[CrossRef] [PubMed]

Rasmussen, H. K.

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Rasmussen, P. D.

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
[CrossRef] [PubMed]

Renversez, G.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Richardson, D. J.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

Rindorf, L.

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

Rosberg, C. R.

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
[CrossRef] [PubMed]

Russell, P. S. J.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Russell, P. St. J.

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Sanghera, J. S.

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999).
[CrossRef]

Schmidt, M. A.

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Shelby, R. M.

D. J. Milliron, S. Raoux, R. M. Shelby, and J. Jordan-Sweet, “Solution-phase deposition and nanopatterning of GeSbSe phase-change materials,” Nat. Mater.6(5), 352–356 (2007).
[CrossRef] [PubMed]

Shimakawa, K.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
[CrossRef]

Skripatchev, I.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Smektala, F.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

Solin, S. A.

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B8(2), 756–768 (1973).
[CrossRef]

Song, S.

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express18(6), 5472–5480 (2010).
[CrossRef] [PubMed]

Stark, S. P.

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
[CrossRef] [PubMed]

Steinvurzel, P.

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

Strasser, T. A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstrucutred optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

Suzuki, T.

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

Tarasov, V.

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

Town, G. E.

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

Traynor, N.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Troles, J.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Tsay, C.

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010).
[CrossRef] [PubMed]

Tverjanovich, A. S.

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
[CrossRef] [PubMed]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Uebel, P.

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

van Eijkelenborg, M. A.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Vasilief, I.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Vlachos, K.

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express18(23), 24344–24351 (2010).
[CrossRef] [PubMed]

Wagner, T.

T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys.103(6), 063511 (2008).
[CrossRef]

Wei, L.

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

Westbrook, P. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstrucutred optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

White, T.

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

Windeler, R. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstrucutred optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

Wondraczek, L.

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
[CrossRef] [PubMed]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

Wu, D. K. C.

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
[CrossRef]

Yannopoulos, S. N.

S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, “Composition-dependent photosensitivity in As-S glasses induced by bandgap light: Structural origin by Raman scattering,” Opt. Lett.36(4), 534–536 (2011).
[CrossRef] [PubMed]

T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys.103(6), 063511 (2008).
[CrossRef]

K. S. Andrikopoulos, A. G. Kalampounias, and S. N. Yannopoulos, “Rounding effects on doped sulfur’s living polymerization: The case of As and Se,” Phys. Rev. B72(1), 014203 (2005).
[CrossRef]

Yeom, D. I.

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

Yuan, W.

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

Zagari, J.

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

Zha, Y.

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010).
[CrossRef] [PubMed]

Adv. Phys.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys.44(6), 475–588 (1995).
[CrossRef]

Appl. Phys. Lett.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Chem. Mater.

T. A. Guiton and C. G. Pantano, “Solution/gelation of arsenic trisulfide in amine solvents,” Chem. Mater.1(5), 558–563 (1989).
[CrossRef]

Electron. Lett.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett.36(24), 1998–2000 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-mode resonances in hybrid polymer-silica microstrucutred optical fiber gratings,” IEEE Photon. Technol. Lett.12(5), 495–497 (2000).
[CrossRef]

J. Appl. Phys.

G. C. Chern and I. Lauks, “Spin coated amorphous chalcogenide films: Structural characterization,” J. Appl. Phys.54(5), 2701–2705 (1983).
[CrossRef]

T. Kohoutek, T. Wagner, M. Frumar, A. Chrissanthopoulos, O. Kostadinova, and S. N. Yannopoulos, “Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films,” J. Appl. Phys.103(6), 063511 (2008).
[CrossRef]

J. Lightwave Technol.

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
[CrossRef]

J. Non-Cryst. Solids

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids239(1-3), 139–142 (1998).
[CrossRef]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids256–257, 6–16 (1999).
[CrossRef]

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids357(11-13), 2480–2483 (2011).
[CrossRef]

Nat. Mater.

D. J. Milliron, S. Raoux, R. M. Shelby, and J. Jordan-Sweet, “Solution-phase deposition and nanopatterning of GeSbSe phase-change materials,” Nat. Mater.6(5), 352–356 (2007).
[CrossRef] [PubMed]

Nat. Photonics

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Opt. Express

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, “A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid,” Opt. Express18(24), 24654–24660 (2010).
[CrossRef] [PubMed]

C. Tsay, Y. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010).
[CrossRef] [PubMed]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
[CrossRef] [PubMed]

C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010).
[CrossRef] [PubMed]

N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express12(8), 1540–1550 (2004).
[CrossRef] [PubMed]

S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express18(6), 5472–5480 (2010).
[CrossRef] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011).
[CrossRef] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express18(25), 26655–26665 (2010).
[CrossRef] [PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15(19), 12145–12150 (2007).
[CrossRef] [PubMed]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express18(23), 24344–24351 (2010).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express9(7), 319–327 (2001).
[CrossRef] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Opt. Lett.

S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, “Composition-dependent photosensitivity in As-S glasses induced by bandgap light: Structural origin by Raman scattering,” Opt. Lett.36(4), 534–536 (2011).
[CrossRef] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
[CrossRef] [PubMed]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
[CrossRef] [PubMed]

Opt. Mater.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater.32(11), 1532–1539 (2010).
[CrossRef]

Phys. Rev. B

K. S. Andrikopoulos, A. G. Kalampounias, and S. N. Yannopoulos, “Rounding effects on doped sulfur’s living polymerization: The case of As and Se,” Phys. Rev. B72(1), 014203 (2005).
[CrossRef]

R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B8(2), 756–768 (1973).
[CrossRef]

Other

A. Zakery and S. R. Elliott, Optical nonlinearities in chalcogenide glasses and their applications (Berlin, Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of (a) PCF with As2S3 layers in the holes. (b) Single hole demonstrating the formation of a thin As2S3 glass layer

Fig. 2
Fig. 2

(a) Cross-section of the core of ESM-12-01 with As2S3 layers deposited. (b) Single hole with As2S3 layer and (c) Inclined by 20° image of the core, indicating the glass formation in all the holes around the core of the fiber. (d) Magnified image of a single hole showing the deposited film.

Fig. 3
Fig. 3

(a) Cross-section of the core of ESM-12-01 with As2S3 layers deposited. (b) Single hole with As2S3 layer and (c) Image of a hole next to the core obtained after inclining the fiber at an angle of 20°, indicating the formation of nanoscale chalcogenide glass “islands”.

Fig. 4
Fig. 4

(a) Cross-section of the core of LMA-5 with c2 concentration of As2S3 layers deposited. (b) Single hole with As2S3 layer.

Fig. 5
Fig. 5

Raman spectra of (i) As2S3 solutions (denoted as As2S3/BA(c1) and As2S3/EDA(c2)), (ii) As2S3 layers inside PCF air-holes (denoted as As2S3/ESM(c1), As2S3/LMA(c2) and As2S3/ESM (c2)), (iii) of the solvents themselves (denoted as BA and EDA) and (iv) fused silica (denoted as SiO2 -magnified x50)

Fig. 6
Fig. 6

Transmission output spectra of (a) As2S3/ESM(c1) and (b) As2S3/ESM(c2). (c),(d) Corresponding losses. Inset: Near-field image of the fundamental mode in As2S3/ESM(c2).

Fig. 7
Fig. 7

Transmission output spectra of (a) As2S3/LMA-5(c1) and (b) As2S3/LMA-5(c2). (c),(d) Corresponding losses. Inset: Near-field image of the fundamental mode in As2S3/LMA-5(c2).

Metrics