Abstract

We show that a SiC photonic crystal cannot only inhibit two photon absorption completely, but also suppress higher-order multiple photon absorption significantly at telecommunication wavelengths, compared to conventional Si-based photonic crystal nanocavities. Resonant spectra of a SiC nanocavity maintain a Lorentzian profile even at input energies 100 times higher than what can be applied to a Si nanocavity without causing nonlinear effects. Theoretical fitting of the results indicates that the four photon absorption coefficient in the SiC nanocavity is less than 2.0 × 10−5 cm5/GW3. These results will contribute to the development of high-power applications of SiC nanocavities such as harmonic generation, parametric down conversion, and Raman amplification.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  2. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
    [CrossRef]
  3. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
    [CrossRef] [PubMed]
  4. N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm.23(7), 1315–1320 (2005).
    [CrossRef]
  5. P. E. Barclay, K. Srinivasan, and O. Y. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
    [CrossRef] [PubMed]
  6. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
    [CrossRef] [PubMed]
  7. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
    [CrossRef] [PubMed]
  8. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  9. H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
    [CrossRef]
  10. H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007).
    [CrossRef]
  11. H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett.93(5), 051114 (2008).
    [CrossRef]
  12. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B1(1), 67–72 (1984).
    [CrossRef]
  13. H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys.39(12), 2737–2746 (2006).
    [CrossRef]
  14. S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011).
    [CrossRef] [PubMed]
  15. B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express19(12), 11084–11089 (2011).
    [CrossRef] [PubMed]
  16. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett.36(20), 3981–3983 (2011).
    [CrossRef] [PubMed]
  17. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011).
    [CrossRef]
  18. B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
    [CrossRef]
  19. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
    [CrossRef]
  20. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
    [CrossRef] [PubMed]
  21. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
    [CrossRef]
  22. N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994).
    [CrossRef]
  23. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  24. S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys.7(2), 138–141 (2011).
    [CrossRef]

2011

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011).
[CrossRef] [PubMed]

B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express19(12), 11084–11089 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett.36(20), 3981–3983 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011).
[CrossRef]

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys.7(2), 138–141 (2011).
[CrossRef]

2009

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

2008

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett.93(5), 051114 (2008).
[CrossRef]

2007

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

2006

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys.39(12), 2737–2746 (2006).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

2005

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm.23(7), 1315–1320 (2005).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Y. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

2003

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

1999

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

1994

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994).
[CrossRef]

1984

B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B1(1), 67–72 (1984).
[CrossRef]

Agostini, P.

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011).
[CrossRef] [PubMed]

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys.7(2), 138–141 (2011).
[CrossRef]

Agrawal, G. P.

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Asakawa, K.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett.93(5), 051114 (2008).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm.23(7), 1315–1320 (2005).
[CrossRef]

Asano, T.

B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express19(12), 11084–11089 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett.36(20), 3981–3983 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011).
[CrossRef]

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Barclay, P. E.

P. E. Barclay, K. Srinivasan, and O. Y. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

Cardenas, J.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Chen, L.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Chen, W. M.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994).
[CrossRef]

Cohen, O.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

DiChiara, A. D.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys.7(2), 138–141 (2011).
[CrossRef]

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011).
[CrossRef] [PubMed]

DiMauro, L. F.

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011).
[CrossRef] [PubMed]

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys.7(2), 138–141 (2011).
[CrossRef]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

Garcia, H.

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys.39(12), 2737–2746 (2006).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

Ghimire, S.

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011).
[CrossRef] [PubMed]

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys.7(2), 138–141 (2011).
[CrossRef]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Ikeda, N.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett.93(5), 051114 (2008).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm.23(7), 1315–1320 (2005).
[CrossRef]

Inoue, K.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett.93(5), 051114 (2008).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm.23(7), 1315–1320 (2005).
[CrossRef]

Ishikawa, H.

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007).
[CrossRef]

Janzén, E.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Kalyanaraman, R.

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys.39(12), 2737–2746 (2006).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Kira, G.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Konstantinov, A. O.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994).
[CrossRef]

Kordina, O.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994).
[CrossRef]

Kuo, Y. H.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Kuramochi, E.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Lin, Q.

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Lipson, M.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Mitsugi, S.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Monemar, B.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994).
[CrossRef]

Nagashima, T.

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

Noda, S.

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011).
[CrossRef]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett.36(20), 3981–3983 (2011).
[CrossRef] [PubMed]

B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express19(12), 11084–11089 (2011).
[CrossRef] [PubMed]

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Oda, H.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett.93(5), 051114 (2008).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007).
[CrossRef]

Painter, O. J.

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Painter, O. Y.

P. E. Barclay, K. Srinivasan, and O. Y. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

Paniccia, M.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Poitras, C. B.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Preston, K.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

Raday, O.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Reis, D. A.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys.7(2), 138–141 (2011).
[CrossRef]

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011).
[CrossRef] [PubMed]

Robinson, J. T.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Rong, H.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Shinya, A.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Sih, V.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Sistrunk, E.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys.7(2), 138–141 (2011).
[CrossRef]

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011).
[CrossRef] [PubMed]

Son, N. T.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994).
[CrossRef]

Song, B. S.

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011).
[CrossRef]

B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express19(12), 11084–11089 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett.36(20), 3981–3983 (2011).
[CrossRef] [PubMed]

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Sörman, E.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994).
[CrossRef]

Srinivasan, K.

P. E. Barclay, K. Srinivasan, and O. Y. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

Sugimoto, Y.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett.93(5), 051114 (2008).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm.23(7), 1315–1320 (2005).
[CrossRef]

Szafruga, U. B.

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011).
[CrossRef] [PubMed]

Tanabe, T.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

Tanaka, Y.

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm.23(7), 1315–1320 (2005).
[CrossRef]

Uesugi, T.

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Wherrett, B. S.

B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B1(1), 67–72 (1984).
[CrossRef]

Xu, S.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Yamada, S.

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011).
[CrossRef]

B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express19(12), 11084–11089 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett.36(20), 3981–3983 (2011).
[CrossRef] [PubMed]

Yamanaka, A.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett.93(5), 051114 (2008).
[CrossRef]

Appl. Phys. Lett.

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett.90(23), 231102 (2007).
[CrossRef]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett.93(5), 051114 (2008).
[CrossRef]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett.65(25), 3209–3211 (1994).
[CrossRef]

IEEE J. Quantum Electron.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

IEEE J. Sel. Areas Comm.

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm.23(7), 1315–1320 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

J. Opt. Soc. Am. B

B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B1(1), 67–72 (1984).
[CrossRef]

J. Phys. At. Mol. Opt. Phys.

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys.39(12), 2737–2746 (2006).
[CrossRef]

Nat. Photonics

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics1(4), 232–237 (2007).
[CrossRef]

Nat. Phys.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys.7(2), 138–141 (2011).
[CrossRef]

Nature

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Opt. Express

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

P. E. Barclay, K. Srinivasan, and O. Y. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express19(12), 11084–11089 (2011).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Opt. Lett.

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett.36(20), 3981–3983 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett.107(16), 167407 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic picture of the optical setup used to measure the characteristics of nanocavities at high input energies. Insert images of nanocavities used in experiment.

Fig. 2
Fig. 2

Spectra of the vertical emission from the nanocavities for various input energies. (a) In Si higher energies lead to spectral blue shift due to TPA without significant increase in overall emission. (b) In SiC peak emission increases linearly with input energy and shows complete inhibition of TPA.

Fig. 3
Fig. 3

The model of two-port system consisting of a waveguide and a cavity.

Fig. 4
Fig. 4

Calculated results of optical responses of a Si cavity for various βSi(2). (a), (b) The spectra of βSi(2) = 2.0 cm/GW and 0.5 cm/GW in the Si cavity. (c), (d) The normalized peak intensity and peak wavelength shift for various βSi in the Si cavity, respectively (here, experimental results are also plotted as the solid circles).

Fig. 5
Fig. 5

Calculated results of optical responses of a SiC cavity for various βSiC(4). (a), (b) The spectra of βSiC(4) = 2.0 × 10−4 cm5/GW3 and 2.0 × 10−5 cm5/GW3 in the SiC cavity. (c), (d) The normalized peak intensity and peak wavelength shift for various βSi in SiC cavity, respectively (here, experimental results are also plotted as the solid circles in shaded region).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

da dt ={ j ω 0 ( 1 τ v + 1 τ in + 1 τ MPA + 1 τ FCA ) }a+ 1 2 τ in S 1 ,
α MPA = β (m) I m-1 = β (2) I+ β (3) I 2 + β (4) I 3 +...,
τ MPA = n c α MPA ,
d N e dt = 1 τ MPA × U mω × 1 V MPA Ne τ e ,
τ FCA = n c α FCA .
ω 0 = ε ε ω 0 ,
S 2 = | a | 2 τ v .

Metrics