Abstract

We show that a SiC photonic crystal cannot only inhibit two photon absorption completely, but also suppress higher-order multiple photon absorption significantly at telecommunication wavelengths, compared to conventional Si-based photonic crystal nanocavities. Resonant spectra of a SiC nanocavity maintain a Lorentzian profile even at input energies 100 times higher than what can be applied to a Si nanocavity without causing nonlinear effects. Theoretical fitting of the results indicates that the four photon absorption coefficient in the SiC nanocavity is less than 2.0 × 10−5 cm5/GW3. These results will contribute to the development of high-power applications of SiC nanocavities such as harmonic generation, parametric down conversion, and Raman amplification.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  2. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [CrossRef]
  3. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
    [CrossRef] [PubMed]
  4. N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm. 23(7), 1315–1320 (2005).
    [CrossRef]
  5. P. E. Barclay, K. Srinivasan, and O. Y. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
    [CrossRef] [PubMed]
  6. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
    [CrossRef] [PubMed]
  7. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
    [CrossRef] [PubMed]
  8. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [CrossRef] [PubMed]
  9. H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
    [CrossRef]
  10. H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90(23), 231102 (2007).
    [CrossRef]
  11. H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93(5), 051114 (2008).
    [CrossRef]
  12. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1(1), 67–72 (1984).
    [CrossRef]
  13. H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006).
    [CrossRef]
  14. S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett. 107(16), 167407 (2011).
    [CrossRef] [PubMed]
  15. B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19(12), 11084–11089 (2011).
    [CrossRef] [PubMed]
  16. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett. 36(20), 3981–3983 (2011).
    [CrossRef] [PubMed]
  17. S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011).
    [CrossRef]
  18. B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
    [CrossRef]
  19. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
    [CrossRef]
  20. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [CrossRef] [PubMed]
  21. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
    [CrossRef]
  22. N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett. 65(25), 3209–3211 (1994).
    [CrossRef]
  23. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  24. S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
    [CrossRef]

2011 (5)

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett. 107(16), 167407 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011).
[CrossRef]

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[CrossRef]

B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19(12), 11084–11089 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett. 36(20), 3981–3983 (2011).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93(5), 051114 (2008).
[CrossRef]

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

2007 (4)

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90(23), 231102 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

2006 (2)

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[CrossRef] [PubMed]

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006).
[CrossRef]

2005 (5)

2003 (2)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

1994 (1)

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett. 65(25), 3209–3211 (1994).
[CrossRef]

1984 (1)

Agostini, P.

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett. 107(16), 167407 (2011).
[CrossRef] [PubMed]

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[CrossRef]

Agrawal, G. P.

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Asakawa, K.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93(5), 051114 (2008).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90(23), 231102 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm. 23(7), 1315–1320 (2005).
[CrossRef]

Asano, T.

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett. 36(20), 3981–3983 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011).
[CrossRef]

B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19(12), 11084–11089 (2011).
[CrossRef] [PubMed]

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Barclay, P. E.

Cardenas, J.

Chen, L.

Chen, W. M.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett. 65(25), 3209–3211 (1994).
[CrossRef]

Cohen, O.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

DiChiara, A. D.

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett. 107(16), 167407 (2011).
[CrossRef] [PubMed]

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[CrossRef]

DiMauro, L. F.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[CrossRef]

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett. 107(16), 167407 (2011).
[CrossRef] [PubMed]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Garcia, H.

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Ghimire, S.

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett. 107(16), 167407 (2011).
[CrossRef] [PubMed]

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[CrossRef]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Ikeda, N.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93(5), 051114 (2008).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90(23), 231102 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm. 23(7), 1315–1320 (2005).
[CrossRef]

Inoue, K.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93(5), 051114 (2008).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90(23), 231102 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm. 23(7), 1315–1320 (2005).
[CrossRef]

Ishikawa, H.

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90(23), 231102 (2007).
[CrossRef]

Janzén, E.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett. 65(25), 3209–3211 (1994).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Kalyanaraman, R.

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Kira, G.

Konstantinov, A. O.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett. 65(25), 3209–3211 (1994).
[CrossRef]

Kordina, O.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett. 65(25), 3209–3211 (1994).
[CrossRef]

Kuo, Y. H.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Kuramochi, E.

Lin, Q.

Lipson, M.

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Mitsugi, S.

Monemar, B.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett. 65(25), 3209–3211 (1994).
[CrossRef]

Nagashima, T.

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

Noda, S.

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett. 36(20), 3981–3983 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011).
[CrossRef]

B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19(12), 11084–11089 (2011).
[CrossRef] [PubMed]

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

Oda, H.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93(5), 051114 (2008).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90(23), 231102 (2007).
[CrossRef]

Painter, O. J.

Painter, O. Y.

Paniccia, M.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Poitras, C. B.

Preston, K.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Raday, O.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Reis, D. A.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[CrossRef]

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett. 107(16), 167407 (2011).
[CrossRef] [PubMed]

Robinson, J. T.

Rong, H.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Shinya, A.

Sih, V.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Sistrunk, E.

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[CrossRef]

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett. 107(16), 167407 (2011).
[CrossRef] [PubMed]

Son, N. T.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett. 65(25), 3209–3211 (1994).
[CrossRef]

Song, B. S.

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities,” Opt. Lett. 36(20), 3981–3983 (2011).
[CrossRef] [PubMed]

B. S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19(12), 11084–11089 (2011).
[CrossRef] [PubMed]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011).
[CrossRef]

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Sörman, E.

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett. 65(25), 3209–3211 (1994).
[CrossRef]

Srinivasan, K.

Sugimoto, Y.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93(5), 051114 (2008).
[CrossRef]

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90(23), 231102 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm. 23(7), 1315–1320 (2005).
[CrossRef]

Szafruga, U. B.

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett. 107(16), 167407 (2011).
[CrossRef] [PubMed]

Tanabe, T.

Tanaka, Y.

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90(23), 231102 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm. 23(7), 1315–1320 (2005).
[CrossRef]

Uesugi, T.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

Wherrett, B. S.

Xu, S.

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Yamada, S.

Yamanaka, A.

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93(5), 051114 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

H. Oda, K. Inoue, Y. Tanaka, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Self-phase modulation in photonic-crystal-slab line-defect waveguides,” Appl. Phys. Lett. 90(23), 231102 (2007).
[CrossRef]

H. Oda, K. Inoue, A. Yamanaka, N. Ikeda, Y. Sugimoto, and K. Asakawa, “Light amplification by stimulated Raman scattering in AlGaAs-based photonic-crystal line-defect waveguides,” Appl. Phys. Lett. 93(5), 051114 (2008).
[CrossRef]

S. Yamada, B. S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

N. T. Son, O. Kordina, A. O. Konstantinov, W. M. Chen, E. Sörman, B. Monemar, and E. Janzén, “Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers,” Appl. Phys. Lett. 65(25), 3209–3211 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

N. Ikeda, Y. Sugimoto, Y. Tanaka, K. Inoue, and K. Asakawa, “Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes,” IEEE J. Sel. Areas Comm. 23(7), 1315–1320 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20(7), 532–534 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors,” J. Phys. At. Mol. Opt. Phys. 39(12), 2737–2746 (2006).
[CrossRef]

Nat. Photonics (2)

H. Rong, S. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Nat. Phys. (1)

S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
[CrossRef]

Nature (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, and D. A. Reis, “Redshift in the Optical Absorption of ZnO Single Crystals in the Presence of an Intense Midinfrared Laser Field,” Phys. Rev. Lett. 107(16), 167407 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic picture of the optical setup used to measure the characteristics of nanocavities at high input energies. Insert images of nanocavities used in experiment.

Fig. 2
Fig. 2

Spectra of the vertical emission from the nanocavities for various input energies. (a) In Si higher energies lead to spectral blue shift due to TPA without significant increase in overall emission. (b) In SiC peak emission increases linearly with input energy and shows complete inhibition of TPA.

Fig. 3
Fig. 3

The model of two-port system consisting of a waveguide and a cavity.

Fig. 4
Fig. 4

Calculated results of optical responses of a Si cavity for various βSi(2). (a), (b) The spectra of βSi(2) = 2.0 cm/GW and 0.5 cm/GW in the Si cavity. (c), (d) The normalized peak intensity and peak wavelength shift for various βSi in the Si cavity, respectively (here, experimental results are also plotted as the solid circles).

Fig. 5
Fig. 5

Calculated results of optical responses of a SiC cavity for various βSiC(4). (a), (b) The spectra of βSiC(4) = 2.0 × 10−4 cm5/GW3 and 2.0 × 10−5 cm5/GW3 in the SiC cavity. (c), (d) The normalized peak intensity and peak wavelength shift for various βSi in SiC cavity, respectively (here, experimental results are also plotted as the solid circles in shaded region).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

da dt ={ j ω 0 ( 1 τ v + 1 τ in + 1 τ MPA + 1 τ FCA ) }a+ 1 2 τ in S 1 ,
α MPA = β (m) I m-1 = β (2) I+ β (3) I 2 + β (4) I 3 +...,
τ MPA = n c α MPA ,
d N e dt = 1 τ MPA × U mω × 1 V MPA Ne τ e ,
τ FCA = n c α FCA .
ω 0 = ε ε ω 0 ,
S 2 = | a | 2 τ v .

Metrics