Abstract

We investigate the thermal and mechanical properties of optical fiber taper by using a high spatial resolution Optical Frequency-domain Reflectometry scheme. It was found that the spectral shifts induced by the temperature or strain changes in the fiber taper region are strongly related to the refractive index change of the fundamental mode. It is shown that residual stress induced by taper process results in the inhomogeneous thermal properties, which are eliminated by annealing treatment. The wavelength-force sensitivity is dramatically enhanced by the reduced waist diameter of the taper. It was demonstrated that a taper with a waist diameter of ~6μm has a wavelength-force coefficient of 620.83nm/N, ~500 times higher than that of the standard single mode fiber.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000).
    [CrossRef] [PubMed]
  2. C. Bariáin, I. R. Matı́as, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
    [CrossRef]
  3. S. Zhu, F. Pang, and T. Wang, “Single-mode tapered optical fiber for temperature sensor based on multimode interference,” SPIE 8311, 83112B1–83112B–6 (2011).
  4. F. J. Arregui, I. R. Matı́as, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys.79(2), 90–96 (2000).
    [CrossRef]
  5. X. Wang, Y. Li, and X. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter,” Opt. Lett.35(20), 3354–3356 (2010).
    [CrossRef] [PubMed]
  6. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
    [CrossRef]
  7. T. Wieduwilt, S. Brückner, and H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol.22(7), 075201 (2011).
    [CrossRef]
  8. M. Froggatt and J. Moore, “High-Spatial-Resolution Distributed Strain Measurement in Optical Fiber with Rayleigh Scatter,” Appl. Opt.37(10), 1735–1740 (1998).
    [CrossRef] [PubMed]
  9. M. Froggatt, D. Gifford, S. Kreger, M. Wolfe, and B. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Proceedings of the 18th Optical Fiber Sensors Conference, (Optical Society of America, 2006), paper ThC5.
  10. X. Wang, W. Li, L. Chen, and X. Bao, “Distributed mode coupling measurement along tapered single-mode fibers with optical frequency-domain reflectometry,” J. Lightwave Technol.30(10), 1499–1508 (2012).
    [CrossRef]
  11. F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, and C. Veillas “Optical fiber Young modulus measurement using an optical method,” Electron. Lett.28(11), 1034–1035 (1992).
    [CrossRef]
  12. S. Kreger, D. Gifford, M. Froggatt, B. Soller, and M. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” OFS 18 Technical Digest, ThE42, Cancun, Mexico (2006).

2012 (1)

X. Wang, W. Li, L. Chen, and X. Bao, “Distributed mode coupling measurement along tapered single-mode fibers with optical frequency-domain reflectometry,” J. Lightwave Technol.30(10), 1499–1508 (2012).
[CrossRef]

2011 (1)

T. Wieduwilt, S. Brückner, and H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol.22(7), 075201 (2011).
[CrossRef]

2010 (1)

X. Wang, Y. Li, and X. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter,” Opt. Lett.35(20), 3354–3356 (2010).
[CrossRef] [PubMed]

2000 (3)

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000).
[CrossRef] [PubMed]

C. Bariáin, I. R. Matı́as, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

F. J. Arregui, I. R. Matı́as, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys.79(2), 90–96 (2000).
[CrossRef]

1998 (1)

M. Froggatt and J. Moore, “High-Spatial-Resolution Distributed Strain Measurement in Optical Fiber with Rayleigh Scatter,” Appl. Opt.37(10), 1735–1740 (1998).
[CrossRef] [PubMed]

1992 (2)

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, and C. Veillas “Optical fiber Young modulus measurement using an optical method,” Electron. Lett.28(11), 1034–1035 (1992).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

Arregui, F. J.

C. Bariáin, I. R. Matı́as, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

F. J. Arregui, I. R. Matı́as, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys.79(2), 90–96 (2000).
[CrossRef]

Bao, X.

X. Wang, W. Li, L. Chen, and X. Bao, “Distributed mode coupling measurement along tapered single-mode fibers with optical frequency-domain reflectometry,” J. Lightwave Technol.30(10), 1499–1508 (2012).
[CrossRef]

X. Wang, Y. Li, and X. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter,” Opt. Lett.35(20), 3354–3356 (2010).
[CrossRef] [PubMed]

Bariáin, C.

C. Bariáin, I. R. Matı́as, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

Bartelt, H.

T. Wieduwilt, S. Brückner, and H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol.22(7), 075201 (2011).
[CrossRef]

Birks, T. A.

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000).
[CrossRef] [PubMed]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

Brückner, S.

T. Wieduwilt, S. Brückner, and H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol.22(7), 075201 (2011).
[CrossRef]

Chen, L.

X. Wang, W. Li, L. Chen, and X. Bao, “Distributed mode coupling measurement along tapered single-mode fibers with optical frequency-domain reflectometry,” J. Lightwave Technol.30(10), 1499–1508 (2012).
[CrossRef]

Froggatt, M.

M. Froggatt and J. Moore, “High-Spatial-Resolution Distributed Strain Measurement in Optical Fiber with Rayleigh Scatter,” Appl. Opt.37(10), 1735–1740 (1998).
[CrossRef] [PubMed]

Gagnaire, H.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, and C. Veillas “Optical fiber Young modulus measurement using an optical method,” Electron. Lett.28(11), 1034–1035 (1992).
[CrossRef]

Li, W.

X. Wang, W. Li, L. Chen, and X. Bao, “Distributed mode coupling measurement along tapered single-mode fibers with optical frequency-domain reflectometry,” J. Lightwave Technol.30(10), 1499–1508 (2012).
[CrossRef]

Li, Y.

X. Wang, Y. Li, and X. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter,” Opt. Lett.35(20), 3354–3356 (2010).
[CrossRef] [PubMed]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

López-Amo, M.

F. J. Arregui, I. R. Matı́as, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys.79(2), 90–96 (2000).
[CrossRef]

C. Bariáin, I. R. Matı́as, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

Mati´as, I. R.

F. J. Arregui, I. R. Matı́as, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys.79(2), 90–96 (2000).
[CrossRef]

C. Bariáin, I. R. Matı́as, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

Moore, J.

M. Froggatt and J. Moore, “High-Spatial-Resolution Distributed Strain Measurement in Optical Fiber with Rayleigh Scatter,” Appl. Opt.37(10), 1735–1740 (1998).
[CrossRef] [PubMed]

Mure-Ravaud, A.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, and C. Veillas “Optical fiber Young modulus measurement using an optical method,” Electron. Lett.28(11), 1034–1035 (1992).
[CrossRef]

Pelissier, S.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, and C. Veillas “Optical fiber Young modulus measurement using an optical method,” Electron. Lett.28(11), 1034–1035 (1992).
[CrossRef]

Pigeon, F.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, and C. Veillas “Optical fiber Young modulus measurement using an optical method,” Electron. Lett.28(11), 1034–1035 (1992).
[CrossRef]

Russell, P. St. J.

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000).
[CrossRef] [PubMed]

Veillas, C.

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, and C. Veillas “Optical fiber Young modulus measurement using an optical method,” Electron. Lett.28(11), 1034–1035 (1992).
[CrossRef]

Wadsworth, W. J.

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000).
[CrossRef] [PubMed]

Wang, X.

X. Wang, W. Li, L. Chen, and X. Bao, “Distributed mode coupling measurement along tapered single-mode fibers with optical frequency-domain reflectometry,” J. Lightwave Technol.30(10), 1499–1508 (2012).
[CrossRef]

X. Wang, Y. Li, and X. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter,” Opt. Lett.35(20), 3354–3356 (2010).
[CrossRef] [PubMed]

Wieduwilt, T.

T. Wieduwilt, S. Brückner, and H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol.22(7), 075201 (2011).
[CrossRef]

Appl. Opt. (1)

M. Froggatt and J. Moore, “High-Spatial-Resolution Distributed Strain Measurement in Optical Fiber with Rayleigh Scatter,” Appl. Opt.37(10), 1735–1740 (1998).
[CrossRef] [PubMed]

Electron. Lett. (1)

F. Pigeon, S. Pelissier, A. Mure-Ravaud, H. Gagnaire, and C. Veillas “Optical fiber Young modulus measurement using an optical method,” Electron. Lett.28(11), 1034–1035 (1992).
[CrossRef]

J. Lightwave Technol. (2)

X. Wang, W. Li, L. Chen, and X. Bao, “Distributed mode coupling measurement along tapered single-mode fibers with optical frequency-domain reflectometry,” J. Lightwave Technol.30(10), 1499–1508 (2012).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol.10(4), 432–438 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

T. Wieduwilt, S. Brückner, and H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol.22(7), 075201 (2011).
[CrossRef]

Opt. Lett. (2)

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000).
[CrossRef] [PubMed]

X. Wang, Y. Li, and X. Bao, “C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter,” Opt. Lett.35(20), 3354–3356 (2010).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

F. J. Arregui, I. R. Matı́as, and M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A Phys.79(2), 90–96 (2000).
[CrossRef]

Sens. Actuators B Chem. (1)

C. Bariáin, I. R. Matı́as, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem.69(1-2), 127–131 (2000).
[CrossRef]

Other (3)

S. Zhu, F. Pang, and T. Wang, “Single-mode tapered optical fiber for temperature sensor based on multimode interference,” SPIE 8311, 83112B1–83112B–6 (2011).

M. Froggatt, D. Gifford, S. Kreger, M. Wolfe, and B. Soller, “Distributed strain and temperature discrimination in unaltered polarization maintaining fiber,” in Proceedings of the 18th Optical Fiber Sensors Conference, (Optical Society of America, 2006), paper ThC5.

S. Kreger, D. Gifford, M. Froggatt, B. Soller, and M. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry,” OFS 18 Technical Digest, ThE42, Cancun, Mexico (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch image of a gentle fiber taper. x SMF , x TaperU , and x TaperL ( z ) are the initial length of jacket-off SMF, the uniform segment in taper, and a sub-segment in the up- and down-segments in taper, respectively. x SMF = x SMF 1 + x SMF 2 where x SMF 1 and x SMF 2 are initial lengths of left and right side jacket-off SMF, respectively.

Fig. 2
Fig. 2

Schematic setup of OFDR system. TLS: tunable light source; C1: 99:1 coupler; C2, C3, C4, C5: 50:50 couplers; PC: polarization controller; PBS: polarization beam splitter; OPD: optical path difference; PD: photo-detector; DAQ: data acquisition.

Fig. 3
Fig. 3

(a) Backscatter signal versus distance along the taper (left axis) and the cladding diameter of the taper (right axis). (b) Cross-correlation calculation of the spectra of the segment in the uniform taper range of non-annealed taper A (the blue window in (a)) with increasing temperature from 25°C to 38°C.

Fig. 4
Fig. 4

Wavelength shift vs. temperature for (a) non-annealed taper, (b) annealed taper, and (c) SMF, respectively. The left and right axes show the temperature increasing case and the temperature decreasing case, respectively. The samples are the experimental data and the linear curves are the fitting results.

Fig. 5
Fig. 5

(a) The standard deviation of wavelength shift of cross-correlation calculation as a function of the spatial resolution. (b) The wavelength shifts of cross-correlation calculation over 100 measurements at the room temperature, when the spatial resolution is ~3.85mm.

Fig. 6
Fig. 6

(a) Wavelength shifts of cross-correlation calculation along the taper length (left axis) and the cladding diameter of the gently taper A (right axis). Taper A: Length of taper: xA = 10.4cm; Uniform segment of taper: d Taper U A = 12.2μm, x Taper U A = 4.9cm. (b) Wavelength shifts as a function of force for the uniform segment of taper A (left axis) and SMF (right axis). The samples are the experimental data and the curves are the linear fitting results. (c) The force sensitivities along the fiber (left axis) and the cladding diameter of the gently taper A (right axis).

Fig. 7
Fig. 7

(a) Wavelength shift of cross-correlation calculation along the fiber length (left axis) and the cladding diameter of the gentle taper B (right axis). Taper B: Length of taper: xB = 12.6cm; Uniform segment of taper: d Taper U B = 7.8μm, x Taper U B = 4.7cm. (b) Wavelength shift as a function of force for SMF (left axis) and uniform segment of taper B (right axis). The samples are the experimental data and the curves are the linear fitting results. (c) The force sensitivity along the fiber (left axis) and the cladding diameter of taper B (right axis).

Fig. 8
Fig. 8

(a) Cross-correlation calculation of the spectra of the segment in the uniform taper range between the zero force applied state and three increasing force applied states. (b) Wavelength shifts of cross-correlation calculation along the taper length as the force increases (left axis), and the cladding diameter of taper A (right axis). (c) Wavelength shifts as a function of force in the case of tapers A, B and C. The samples are the experimental data and the curves are the linear fitting results. (d) The force sensitivities along the uniform segments of these tapers.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S( z ¯ )= V 2Ω κ( z ¯ )
I Δz ( ω, z )=| 2π z z +Δz e iωz S( z )dz |= V 2Ω | Κ( ω, z ,Δz ) |
F=EA Δx x
Δx=Δ x TaperU +Δ x SMF + z Δ x TaperL (z)
x= x TaperU + x SMF + z x TaperL (z)
Δ x SMF Δ x TaperU = F x SMF E A SMF E A TaperU F x TaperU = x SMF x TaperU ( d TaperU d SMF ) 2
Δ x TaperL ( z ) Δ x TaperU = F x TaperL ( z ) E A TaperL ( z ) E A TaperU F x TaperU = x TaperL ( z ) x TaperU ( d TaperU d TaperL ( z ) ) 2
Δ x TaperU = Δx γ
γ=1+ x SMF x TaperU ( d TaperU d SMF ) 2 + z x TaperL ( z ) x TaperU ( d TaperU d TaperL ( z ) ) 2
F=E A TaperU Δ x TaperU x TaperU = πE d TaperU 2 Δx 4γ x TaperU
ε TaperU ε SMF = A SMF A TaperU = ( d SMF d TaperU ) 2
ζ F = Δ λ c.c. ΔF = Δ λ c.c. Δε Δε ΔF = ζ ε EA = 4 ζ ε πE d SMF 2

Metrics