Abstract

Comparing simulation results with experimental findings, it is found that considering nonlinear optical gain is quite essential to accurately obtain dynamic and static characteristics of self-assembled quantum-dot lasers (SAQDLs). In fact, the nonlinear optical gain prevents extreme decline or growth of photon population as the time increases and of output power as the injected current enhances. It also results in multi-mode lasing and increasing the number of lasing modes with elevation of the injected current. In addition, the best performance of SAQDLs, at a certain injected current, depends on homogeneous and inhomogeneous broadening. Thermal carrier excitation results in degradation of light-current characteristics. It also leads to a red shift in dominant lasing modes at low injected currents, the dominant lasing modes move toward higher energies as the current enhances until the most dominant mode becomes the central one.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Steiner, “Semiconductor nano structures for optoelectronic applications,” (Artech House, 2004).
  2. D. Bimberg, M. Grundmann, and N. N. Ledentov, “Quantum Dot Heterostructures,” (Wiley, 1999).
  3. M. Sugawara, “Effect of carrier dynamic on quantum-dot laser performance and possibility of bi-exciton lasing,” Proc. SPIE 3283, 88–99 (1998).
    [CrossRef]
  4. M. Sugawara, N. Hatori, H. Ebe, and M. Ishida, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” Appl. Phys. B 97, 043523 (2005).
  5. M. Sugawara, “Self -Assembled InGaAs/GaAs Quantum Dots,” (Academic Press, 60, 1999), Chap. 6.
  6. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
    [CrossRef]
  7. M. Sugawara, “Self -Assembled InGaAs/GaAs Quantum Dots,” (Academic Press, 60, 1999), Chap. 1.
  8. M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71(19), 2791 (1997).
    [CrossRef]
  9. C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the ultrabroadband InGaAs/GaAs interband quantum-dot laser,” Comput. Mater. Sci. (2008), doi:.
    [CrossRef]
  10. C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the broadband Semiconductor quantum-dot laser,” Appl. Phys. Lett. 91(6), 061117 (2007).
    [CrossRef]
  11. L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
    [CrossRef]
  12. M. Grundmann, Nano-Optoelectronics, Concepts, Physics and Devices (Springer, 2002).
  13. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron 9(5), 1308–1314 (2003).
    [CrossRef]
  14. O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE J. Trans. Electron Devices 50(7), 1575–1581 (2003).
    [CrossRef]
  15. A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98(10), 104506 (2005).
    [CrossRef]
  16. A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. 43(4), 287–294 (2007).
    [CrossRef]
  17. F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
    [CrossRef]
  18. D. Gready and G. Eisenstein, “carrier dynamics in tunneling injection quantum dot lasers,” IEEE J. Quantum Electron. 46(11), 1611–1618 (2010).
    [CrossRef]
  19. L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
    [CrossRef]
  20. D. Ghodsi Nahri and A. S. Naeimi, “Simulation of static characteristics of self-assembled quantum-dot lasers,” World Appl. Sci. J. 11(1), 12–17 (2010).
  21. A. S. Naeimi, D. Ghodsi Nahri, and S. K. Kazemipour, “Analysis of dynamic-characteristics of self-assembled quantum dot lasers,” World Appl. Sci. J. 11(1), 6–12 (2010).
  22. D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,”Opt. Laser Technol. 44(8), 2436–2442 (2012), http://dx.doi.org/10.1016/j.optlastec.2012.04.002.
  23. K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. 34(16), 1588–1590 (1998).
    [CrossRef]
  24. H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. 3(2), 188–195 (1997).
    [CrossRef]

2012 (1)

D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,”Opt. Laser Technol. 44(8), 2436–2442 (2012), http://dx.doi.org/10.1016/j.optlastec.2012.04.002.

2010 (4)

D. Gready and G. Eisenstein, “carrier dynamics in tunneling injection quantum dot lasers,” IEEE J. Quantum Electron. 46(11), 1611–1618 (2010).
[CrossRef]

L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
[CrossRef]

D. Ghodsi Nahri and A. S. Naeimi, “Simulation of static characteristics of self-assembled quantum-dot lasers,” World Appl. Sci. J. 11(1), 12–17 (2010).

A. S. Naeimi, D. Ghodsi Nahri, and S. K. Kazemipour, “Analysis of dynamic-characteristics of self-assembled quantum dot lasers,” World Appl. Sci. J. 11(1), 6–12 (2010).

2009 (1)

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

2008 (1)

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the ultrabroadband InGaAs/GaAs interband quantum-dot laser,” Comput. Mater. Sci. (2008), doi:.
[CrossRef]

2007 (2)

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the broadband Semiconductor quantum-dot laser,” Appl. Phys. Lett. 91(6), 061117 (2007).
[CrossRef]

A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. 43(4), 287–294 (2007).
[CrossRef]

2005 (2)

M. Sugawara, N. Hatori, H. Ebe, and M. Ishida, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” Appl. Phys. B 97, 043523 (2005).

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98(10), 104506 (2005).
[CrossRef]

2003 (2)

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron 9(5), 1308–1314 (2003).
[CrossRef]

O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE J. Trans. Electron Devices 50(7), 1575–1581 (2003).
[CrossRef]

2000 (1)

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

1998 (3)

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[CrossRef]

M. Sugawara, “Effect of carrier dynamic on quantum-dot laser performance and possibility of bi-exciton lasing,” Proc. SPIE 3283, 88–99 (1998).
[CrossRef]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. 34(16), 1588–1590 (1998).
[CrossRef]

1997 (2)

H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. 3(2), 188–195 (1997).
[CrossRef]

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71(19), 2791 (1997).
[CrossRef]

Breuer, S.

L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
[CrossRef]

Calligari, V.

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98(10), 104506 (2005).
[CrossRef]

Chen, J. X.

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98(10), 104506 (2005).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron 9(5), 1308–1314 (2003).
[CrossRef]

Djie, H. S.

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the ultrabroadband InGaAs/GaAs interband quantum-dot laser,” Comput. Mater. Sci. (2008), doi:.
[CrossRef]

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the broadband Semiconductor quantum-dot laser,” Appl. Phys. Lett. 91(6), 061117 (2007).
[CrossRef]

Drzewietzki, L.

L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
[CrossRef]

Ebe, H.

M. Sugawara, N. Hatori, H. Ebe, and M. Ishida, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” Appl. Phys. B 97, 043523 (2005).

Eisenstein, G.

D. Gready and G. Eisenstein, “carrier dynamics in tunneling injection quantum dot lasers,” IEEE J. Quantum Electron. 46(11), 1611–1618 (2010).
[CrossRef]

Elsäßer, W.

L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
[CrossRef]

Even, J.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Fiore, A.

A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. 43(4), 287–294 (2007).
[CrossRef]

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98(10), 104506 (2005).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron 9(5), 1308–1314 (2003).
[CrossRef]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron 9(5), 1308–1314 (2003).
[CrossRef]

Ghodsi Nahri, D.

D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,”Opt. Laser Technol. 44(8), 2436–2442 (2012), http://dx.doi.org/10.1016/j.optlastec.2012.04.002.

A. S. Naeimi, D. Ghodsi Nahri, and S. K. Kazemipour, “Analysis of dynamic-characteristics of self-assembled quantum dot lasers,” World Appl. Sci. J. 11(1), 6–12 (2010).

D. Ghodsi Nahri and A. S. Naeimi, “Simulation of static characteristics of self-assembled quantum-dot lasers,” World Appl. Sci. J. 11(1), 12–17 (2010).

Gioannini, M.

L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
[CrossRef]

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Gready, D.

D. Gready and G. Eisenstein, “carrier dynamics in tunneling injection quantum dot lasers,” IEEE J. Quantum Electron. 46(11), 1611–1618 (2010).
[CrossRef]

Grillot, F.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Harris, L.

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[CrossRef]

Hatori, N.

M. Sugawara, N. Hatori, H. Ebe, and M. Ishida, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” Appl. Phys. B 97, 043523 (2005).

Hill, G.

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[CrossRef]

Homeyer, E.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Hopkinson, M.

L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
[CrossRef]

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[CrossRef]

Ishida, M.

M. Sugawara, N. Hatori, H. Ebe, and M. Ishida, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” Appl. Phys. B 97, 043523 (2005).

Ishikawa, H.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. 34(16), 1588–1590 (1998).
[CrossRef]

H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. 3(2), 188–195 (1997).
[CrossRef]

Kazemipour, S. K.

A. S. Naeimi, D. Ghodsi Nahri, and S. K. Kazemipour, “Analysis of dynamic-characteristics of self-assembled quantum dot lasers,” World Appl. Sci. J. 11(1), 6–12 (2010).

Krakowski, M.

L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
[CrossRef]

Loualiche, S.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Markus, A.

A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. 43(4), 287–294 (2007).
[CrossRef]

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98(10), 104506 (2005).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron 9(5), 1308–1314 (2003).
[CrossRef]

Montrosset, I.

L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
[CrossRef]

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Mowbray, D. J.

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[CrossRef]

Mukai, K.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. 34(16), 1588–1590 (1998).
[CrossRef]

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71(19), 2791 (1997).
[CrossRef]

H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. 3(2), 188–195 (1997).
[CrossRef]

Naeimi, A. S.

A. S. Naeimi, D. Ghodsi Nahri, and S. K. Kazemipour, “Analysis of dynamic-characteristics of self-assembled quantum dot lasers,” World Appl. Sci. J. 11(1), 6–12 (2010).

D. Ghodsi Nahri and A. S. Naeimi, “Simulation of static characteristics of self-assembled quantum-dot lasers,” World Appl. Sci. J. 11(1), 12–17 (2010).

Nakata, Y.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. 34(16), 1588–1590 (1998).
[CrossRef]

H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. 3(2), 188–195 (1997).
[CrossRef]

Ohtsubo, K.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. 34(16), 1588–1590 (1998).
[CrossRef]

Ooi, B. S.

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the ultrabroadband InGaAs/GaAs interband quantum-dot laser,” Comput. Mater. Sci. (2008), doi:.
[CrossRef]

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the broadband Semiconductor quantum-dot laser,” Appl. Phys. Lett. 91(6), 061117 (2007).
[CrossRef]

Paranthoen, C.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron 9(5), 1308–1314 (2003).
[CrossRef]

Piron, R.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Provost, J.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron 9(5), 1308–1314 (2003).
[CrossRef]

Qasaimeh, O.

O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE J. Trans. Electron Devices 50(7), 1575–1581 (2003).
[CrossRef]

Rossetti, M.

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98(10), 104506 (2005).
[CrossRef]

Sakamoto, A.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Shoji, H.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. 34(16), 1588–1590 (1998).
[CrossRef]

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71(19), 2791 (1997).
[CrossRef]

H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. 3(2), 188–195 (1997).
[CrossRef]

Skolnick, M. S.

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[CrossRef]

Sugawara, M.

M. Sugawara, N. Hatori, H. Ebe, and M. Ishida, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” Appl. Phys. B 97, 043523 (2005).

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. 34(16), 1588–1590 (1998).
[CrossRef]

M. Sugawara, “Effect of carrier dynamic on quantum-dot laser performance and possibility of bi-exciton lasing,” Proc. SPIE 3283, 88–99 (1998).
[CrossRef]

H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. 3(2), 188–195 (1997).
[CrossRef]

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71(19), 2791 (1997).
[CrossRef]

Sugiyama, Y.

H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. 3(2), 188–195 (1997).
[CrossRef]

Tan, C. L.

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the ultrabroadband InGaAs/GaAs interband quantum-dot laser,” Comput. Mater. Sci. (2008), doi:.
[CrossRef]

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the broadband Semiconductor quantum-dot laser,” Appl. Phys. Lett. 91(6), 061117 (2007).
[CrossRef]

Thè, G. A. P.

L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
[CrossRef]

Veselinov, K.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

Wang, Y.

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the ultrabroadband InGaAs/GaAs interband quantum-dot laser,” Comput. Mater. Sci. (2008), doi:.
[CrossRef]

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the broadband Semiconductor quantum-dot laser,” Appl. Phys. Lett. 91(6), 061117 (2007).
[CrossRef]

Yokoyama, N.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. 34(16), 1588–1590 (1998).
[CrossRef]

H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. 3(2), 188–195 (1997).
[CrossRef]

Appl. Phys. B (1)

M. Sugawara, N. Hatori, H. Ebe, and M. Ishida, “Modeling room-temperature lasing spectra of 1.3-µm self-assembled InAs/GaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection,” Appl. Phys. B 97, 043523 (2005).

Appl. Phys. Lett. (3)

M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett. 71(19), 2791 (1997).
[CrossRef]

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the broadband Semiconductor quantum-dot laser,” Appl. Phys. Lett. 91(6), 061117 (2007).
[CrossRef]

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[CrossRef]

Comput. Mater. Sci. (1)

C. L. Tan, Y. Wang, H. S. Djie, and B. S. Ooi, “The role of optical gain broadening in the ultrabroadband InGaAs/GaAs interband quantum-dot laser,” Comput. Mater. Sci. (2008), doi:.
[CrossRef]

Electron. Lett. (1)

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots,” Electron. Lett. 34(16), 1588–1590 (1998).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE J. Quantum Electron. 43(4), 287–294 (2007).
[CrossRef]

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs–InP(113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

D. Gready and G. Eisenstein, “carrier dynamics in tunneling injection quantum dot lasers,” IEEE J. Quantum Electron. 46(11), 1611–1618 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron 9(5), 1308–1314 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa, “Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer,” IEEE J. Sel. Top. Quantum Electron. 3(2), 188–195 (1997).
[CrossRef]

IEEE J. Trans. Electron Devices (1)

O. Qasaimeh, “Effect of inhomogeneous line broadening on gain and differential gain of quantum dot lasers,” IEEE J. Trans. Electron Devices 50(7), 1575–1581 (2003).
[CrossRef]

J. Appl. Phys. (1)

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98(10), 104506 (2005).
[CrossRef]

Opt. Commun. (1)

L. Drzewietzki, G. A. P. Thè, M. Gioannini, S. Breuer, I. Montrosset, W. Elsäßer, M. Hopkinson, and M. Krakowski, “Theoretical and experimental investigations of the temperature dependent continuous wave lasing characteristics and the switch-on dynamics of an InAs/InGaAs quantum-dot semiconductor laser,” Opt. Commun. 283(24), 5092–5098 (2010).
[CrossRef]

Opt. Laser Technol. (1)

D. Ghodsi Nahri, “Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck,”Opt. Laser Technol. 44(8), 2436–2442 (2012), http://dx.doi.org/10.1016/j.optlastec.2012.04.002.

Phys. Rev. B (1)

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InGaAs/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Proc. SPIE (1)

M. Sugawara, “Effect of carrier dynamic on quantum-dot laser performance and possibility of bi-exciton lasing,” Proc. SPIE 3283, 88–99 (1998).
[CrossRef]

World Appl. Sci. J. (2)

D. Ghodsi Nahri and A. S. Naeimi, “Simulation of static characteristics of self-assembled quantum-dot lasers,” World Appl. Sci. J. 11(1), 12–17 (2010).

A. S. Naeimi, D. Ghodsi Nahri, and S. K. Kazemipour, “Analysis of dynamic-characteristics of self-assembled quantum dot lasers,” World Appl. Sci. J. 11(1), 6–12 (2010).

Other (5)

M. Grundmann, Nano-Optoelectronics, Concepts, Physics and Devices (Springer, 2002).

M. Sugawara, “Self -Assembled InGaAs/GaAs Quantum Dots,” (Academic Press, 60, 1999), Chap. 1.

M. Sugawara, “Self -Assembled InGaAs/GaAs Quantum Dots,” (Academic Press, 60, 1999), Chap. 6.

T. D. Steiner, “Semiconductor nano structures for optoelectronic applications,” (Artech House, 2004).

D. Bimberg, M. Grundmann, and N. N. Ledentov, “Quantum Dot Heterostructures,” (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy diagram of the laser-waveguide region and diffusion, recombination, relaxation, and escape processes.

Fig. 2
Fig. 2

Simulated PTE response at the FWHM of IHB 20 meV for different injected currents 2, 2.5, 5, and 10 mA when FWHM of HB is (a) 0.2 meV, (b) 2 meV, (c) 6 meV, (d) 10 meV, (e) 14 meV, and (f) 20 meV considering the linear optical gain at the MPREs.

Fig. 6
Fig. 6

(a) L-I characteristics of a columnar quantum-dot laser [23] and (b) L-E properties, taking into account the total optical gain, for the injected currents 2.15 and 10 mA considering (sign 'TCER') and without considering thermal carrier excitation rate from QDs. The origin of the lasing mode is related to the central mode, K.

Fig. 3
Fig. 3

L-I characteristics for the FWHM of IHB and HB (a) 20 meV and 4, 9, 10, 11, and 13 meV, (b) 20 meV and 14, 16, 20, 40, and 90 meV, (c) 30 meV and 14, 20, 30, 40, and 80 meV, and (d) 60 meV and 30, 40, 50, and 60 meV considering the linear optical gain at the MPREs.

Fig. 4
Fig. 4

PTE response at the FWHM of IHB 20 meV for different injected currents 2, 2.5, 5, and 10 mA when the FWHM of HB is (a) 0.2 meV, (b) 2 meV, (c) 6 meV, (d) 10 meV, (e) 14 meV, and (f) 20 meV considering the total optical gain at the MPREs.

Fig. 5
Fig. 5

L-I characteristics for the FWHM of IHB and HB (a) 20 meV and 10, 11, 13, and 20 meV, (b) 20 meV and 20, 30, 40, 50, 60, 70, and 90 meV, (c) 30 meV and 14, 16, 30, and 34 meV, (d) 30 meV and 34, 40, 50, 60, 70, and 80 meV, (e) 60 meV and 14, 20, 30, and 34 meV, and (f) 60 meV and 34, 40, 50, 52, 54, and 60 meV considering the total optical gain at the MPREs.

Fig. 7
Fig. 7

L-E characteristics (a) not considering and (b) considering the nonlinear optical gain and thermal carrier excitation rate for different injected currents I = 2.1, 2.15, 2.2, 2.5, 3.5, 5, 10, and 20 mA. The origin of the lasing mode is related to the central mode and the FWHM of HB and IHB is 20 meV.

Fig. 8
Fig. 8

Multi-mode PTE response at the FWHM of IHB and HB 20 meV for the central lasing mode and some of neighboring modes for the injected currents (a) 2.1 mA, (b) 2.15 mA, (c) 5 mA, and (d) 10 mA considering the total optical gain and thermal carrier excitation at the MPREs.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

G (1) ( E )= 2π e 2 D QD 3D c n r ε 0 m 0 2 c,v | P cv σ | 2 E cv ( f c ( E ) f v ( E ) ) × L Hom (1) ( E E ) G Inh ( E E cv )d E
G Inh ( E E cv )= 1 2π ξ 0 exp[ ( E E cv ) 2 / 2 ξ 0 2 ]
G (3) ( E )= π e 4 ξ c 2 n r 2 ε 0 2 E 2 m 0 4 V QD c,v | P cv σ | 4 ( f c f v ) E cv γ cv Γ || × I p ( E ) L Hom (3) ( E E cv )
G (3) ( E )= π e 4 ξ c 2 n r 2 ε 0 2 m 0 4 V QD Γ || ( I p ( E ) E 2 ) c,v | P cv σ | 4 E cv γ cv ( f c ( E ) f v ( E ) ) × L Hom (3) ( E E ) G Inh ( E E cv )d E
G tot ( E )= G (1) (E)+ G (3) (E)
G tot ( E )= c,v d G (1) ( E ) [ 1+ ΓSε( E ) L Hom (1) ( E E ) / V a ]
d G (1) ( E )= 2π e 2 D QD 3D c n r ε 0 m 0 2 | P cv σ | 2 E cv ( f c ( E ) f v ( E ) ) × L Hom (1) ( E E ) G Inh ( E E cv )d E
ε( E )= π e 2 | P cv σ | 2 ε 0 m 0 2 n r 2 Γ || ( 1 E )
( 2K+1 )= 4 Γ 0 / ΔE
d N S / dt =I/e N S / τ S N S / τ Sr + N W / τ We
d N W / dt = N S / τ S + J N J / τ J exc D GS N W / τ Wr N W / τ We N W / τ ¯ rel
d N J / dt = N W G J Inh / τ J rel N J / τ r N J / τ J exc D GS cΓ n r M G MJ tot S M
d S M / dt = β N M / τ r + cΓ n r J G MJ tot S M S M / τ p
1/τ J exc = ( 1( N W / 2 D W 3D V W ) ) / τ J 0 exc
τ J 0 exc = τ 0 ( D QD 3D / D W 3D )exp[ ( E W E J GS ) / K B T ]
1/ τ ¯ rel = J G J Inh / τ J rel = J ( 1 P J ) G J Inh / τ 0
G M tot = J G MJ tot = J G MJ (1) [ 1+ Γ S M ε( E M ) L Hom (1) ( E M E J ) / V a ]
G MJ (1) = 2π e 2 D QD 3D c n r ε 0 m 0 2 | P cv σ | 2 E cv ( 2 P J 1 ) G J Inh × L Hom (1) ( E M E J )
P M out =c E M S M Ln( 1/R ) / 2 L cav n r

Metrics