Abstract

High-resolution, wide-bandwidth optical spectrum analysis is essential to the measuring and monitoring of advanced optical, millimeter-wave, and terahertz communication systems, sensing applications and device characterization. One category of high-resolution spectrum analyzers reconstructs the power spectral density of a signal under test by scanning a Brillouin gain line across its spectral extent. In this work, we enhance both the resolution and the optical rejection ratio of such Brillouin-based spectrometers using a combination of two techniques. First, two Brillouin loss lines are superimposed upon a central Brillouin gain to reduce its bandwidth. Second, the vector attributes of stimulated Brillouin scattering amplification in standard, weakly birefringent fibers are used to change the signal state of polarization, and a judiciously aligned output polarizer discriminates between amplified and un-amplified spectral contents. A frequency resolution of 3 MHz, or eight orders of magnitude below the central optical frequency, is experimentally demonstrated. In addition, a weak spectral component is resolved in the presence of a strong adjacent signal, which is 30 dB stronger and detuned by only 60 MHz. The measurement method involves low-bandwidth direct detection, and does not require heterodyne beating. The measurement range of the proposed method is scalable to cover the C + L bands, depending on the tunable pump source. The accuracy of the measurements requires that the pump frequencies are well calibrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  2. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
    [CrossRef]
  3. T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Technol. 28(16), 2247–2257 (2010).
    [CrossRef]
  4. C. S. Park, Y. K. Yeo, and L. C. Ong, “Demonstration of the GbE service in the converged radio-over-fiber/optical networks,” J. Lightwave Technol. 28(16), 2307–2314 (2010).
    [CrossRef]
  5. I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
    [CrossRef]
  6. T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R.-P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Sci. Technol. (submitted).
  7. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  8. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  9. D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
    [CrossRef]
  10. F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
    [CrossRef]
  11. J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
    [CrossRef]
  12. T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41(22), 1234–1235 (2005).
    [CrossRef]
  13. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  14. A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
    [CrossRef]
  15. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long range sensing using Brillouin echos,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
    [CrossRef]
  16. S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express 19(9), 8565–8570 (2011).
    [CrossRef] [PubMed]
  17. S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(16), 1118–1120 (2011).
    [CrossRef]
  18. F. Mihélic, D. Bacquet, J. Zemmouri, and P. Szriftgiser, “Ultrahigh resolution spectral analysis based on a Brillouin fiber laser,” Opt. Lett. 35(3), 432–434 (2010).
    [CrossRef] [PubMed]
  19. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [CrossRef] [PubMed]
  20. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
    [CrossRef] [PubMed]
  21. A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20(16), 1420–1422 (2008).
    [CrossRef]
  22. L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22(10), 712–714 (2010).
    [CrossRef]
  23. L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
    [CrossRef]
  24. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22(11), 2378–2384 (2005).
    [CrossRef]
  25. A. Zadok, S. Chin, L. Thévenaz, E. Zilka, A. Eyal, and M. Tur, “Polarization-induced distortion in stimulated Brillouin scattering slow-light systems,” Opt. Lett. 34(16), 2530–2532 (2009).
    [CrossRef] [PubMed]
  26. T. Schneider, R. Henker, K.-U. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15(15), 9606–9613 (2007).
    [CrossRef] [PubMed]
  27. M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
    [CrossRef]
  28. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
    [CrossRef] [PubMed]
  29. A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
    [CrossRef]
  30. Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19(27), 25873–25880 (2011).
    [CrossRef] [PubMed]
  31. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave lidar,” Appl. Opt. 49(2), 213–219 (2010).
    [CrossRef] [PubMed]
  32. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
    [CrossRef]
  33. M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18(22), 22906–22914 (2010).
    [CrossRef] [PubMed]
  34. T. Schneider, K. Jamshidi, and S. Preußler, “Quasi-light Storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol. 28(17), 2586–2592 (2010).
    [CrossRef]
  35. S. Preußler, K. Jamshidi, A. Wiatrek, R. Henker, C.-A. Bunge, and T. Schneider, “Quasi-light-storage based on time-frequency coherence,” Opt. Express 17(18), 15790–15798 (2009).
    [CrossRef] [PubMed]

2011 (7)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(16), 1118–1120 (2011).
[CrossRef]

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express 19(9), 8565–8570 (2011).
[CrossRef] [PubMed]

A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
[CrossRef]

A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
[CrossRef] [PubMed]

Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19(27), 25873–25880 (2011).
[CrossRef] [PubMed]

2010 (9)

Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave lidar,” Appl. Opt. 49(2), 213–219 (2010).
[CrossRef] [PubMed]

F. Mihélic, D. Bacquet, J. Zemmouri, and P. Szriftgiser, “Ultrahigh resolution spectral analysis based on a Brillouin fiber laser,” Opt. Lett. 35(3), 432–434 (2010).
[CrossRef] [PubMed]

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Technol. 28(16), 2247–2257 (2010).
[CrossRef]

C. S. Park, Y. K. Yeo, and L. C. Ong, “Demonstration of the GbE service in the converged radio-over-fiber/optical networks,” J. Lightwave Technol. 28(16), 2307–2314 (2010).
[CrossRef]

T. Schneider, K. Jamshidi, and S. Preußler, “Quasi-light Storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol. 28(17), 2586–2592 (2010).
[CrossRef]

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long range sensing using Brillouin echos,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
[CrossRef]

M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18(22), 22906–22914 (2010).
[CrossRef] [PubMed]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22(10), 712–714 (2010).
[CrossRef]

2009 (4)

2008 (4)

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[CrossRef] [PubMed]

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20(16), 1420–1422 (2008).
[CrossRef]

2007 (2)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K.-U. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15(15), 9606–9613 (2007).
[CrossRef] [PubMed]

2005 (3)

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41(22), 1234–1235 (2005).
[CrossRef]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22(11), 2378–2384 (2005).
[CrossRef]

2002 (2)

A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
[CrossRef]

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
[CrossRef]

2000 (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

1994 (1)

M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Antes, J.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Babbitt, W. R.

Bacquet, D.

Baney, D. M.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
[CrossRef]

Barber, Z. W.

Baumann, E.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[CrossRef]

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Beugnot, J.-C.

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Boot, J.

M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Boyd, R. W.

Braun, R.-P.

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R.-P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Sci. Technol. (submitted).

Bunge, C.-A.

Chen, S.

Chin, S.

Chitgarha, M.

Coddington, I.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[CrossRef]

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[CrossRef]

Delavaux, J.

Diebold, S.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

Domingo, J. M. S.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Eyal, A.

Fan, X.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Foaleng, S. M.

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Gaeta, A. L.

Galtarossa, A.

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20(16), 1420–1422 (2008).
[CrossRef]

Gauthier, D. J.

Giorgetta, F. R.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[CrossRef]

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Gorodetsky, M. L.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[CrossRef]

Grigat, M.

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R.-P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Sci. Technol. (submitted).

Henker, R.

Heras, C. D.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Holzwarth, R.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[CrossRef]

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Jamshidi, K.

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Junker, M.

Kallfass, I.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

Kaylor, B.

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[CrossRef]

Kitayama, K.

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Kuri, T.

Kurz, F.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

Lauterbach, K.-U.

Leuther, A.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Li, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Loayssa, A.

Lopez-Diaz, D.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Ma, Y.

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Massler, H.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Mihélic, F.

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Motamedi, A.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
[CrossRef]

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Newbury, N. R.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[CrossRef]

Nuccio, S. R.

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Okawachi, Y.

Olmos, J.

Ong, L. C.

Palmieri, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22(10), 712–714 (2010).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20(16), 1420–1422 (2008).
[CrossRef]

Park, C. S.

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Pelayo, J.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

Pellejer, E.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

Petropoulos, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Preußler, S.

Primerov, N.

Reibel, R. R.

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Roos, P. A.

Sagues, M.

Santagiustina, M.

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22(10), 712–714 (2010).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20(16), 1420–1422 (2008).
[CrossRef]

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Schenato, L.

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20(16), 1420–1422 (2008).
[CrossRef]

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Schneider, T.

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(16), 1118–1120 (2011).
[CrossRef]

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express 19(9), 8565–8570 (2011).
[CrossRef] [PubMed]

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

T. Schneider, K. Jamshidi, and S. Preußler, “Quasi-light Storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol. 28(17), 2586–2592 (2010).
[CrossRef]

S. Preußler, K. Jamshidi, A. Wiatrek, R. Henker, C.-A. Bunge, and T. Schneider, “Quasi-light-storage based on time-frequency coherence,” Opt. Express 17(18), 15790–15798 (2009).
[CrossRef] [PubMed]

T. Schneider, R. Henker, K.-U. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15(15), 9606–9613 (2007).
[CrossRef] [PubMed]

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41(22), 1234–1235 (2005).
[CrossRef]

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R.-P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Sci. Technol. (submitted).

Shamee, B.

Sharping, J. E.

Shieh, W.

Shmilovitch, Z.

Swann, W. C.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[CrossRef]

Szafraniec, B.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
[CrossRef]

Szriftgiser, P.

Tang, Y.

Tessmann, A.

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

Thevenaz, L.

Thévenaz, L.

Toda, H.

Toulouse, J.

Tur, M.

Ursini, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22(10), 712–714 (2010).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20(16), 1420–1422 (2008).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

van Deventer, M. O.

M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

Villuendas, F.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

Voskoboinik, A.

Wang, J.

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

White, I. M.

Wiatrek, A.

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(16), 1118–1120 (2011).
[CrossRef]

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express 19(9), 8565–8570 (2011).
[CrossRef] [PubMed]

S. Preußler, K. Jamshidi, A. Wiatrek, R. Henker, C.-A. Bunge, and T. Schneider, “Quasi-light-storage based on time-frequency coherence,” Opt. Express 17(18), 15790–15798 (2009).
[CrossRef] [PubMed]

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R.-P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Sci. Technol. (submitted).

Willner, A. E.

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

Wise, A.

Yang, Q.

Yeniay, A.

Yeo, Y. K.

Zadok, A.

Zemmouri, J.

Zhang, L.

Zhu, Z.

Zilka, E.

Appl. Opt. (1)

Electron. Lett. (1)

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41(22), 1234–1235 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14(3), 355–357 (2002).
[CrossRef]

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23(16), 1118–1120 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-dependent Brillouin gain in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 22(10), 712–714 (2010).
[CrossRef]

IEEE Trans. THz Sci. Technol. (2)

I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Sci. Technol. 1(2), 477–487 (2011).
[CrossRef]

T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R.-P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Sci. Technol. (submitted).

J. Lightwave Technol. (7)

M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[CrossRef]

A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
[CrossRef]

A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002).
[CrossRef]

T. Kuri, H. Toda, J. Olmos, and K. Kitayama, “Reconfigurable dense wavelength-division-multiplexing millimeter-waveband radio-over-fiber access system technologies,” J. Lightwave Technol. 28(16), 2247–2257 (2010).
[CrossRef]

C. S. Park, Y. K. Yeo, and L. C. Ong, “Demonstration of the GbE service in the converged radio-over-fiber/optical networks,” J. Lightwave Technol. 28(16), 2307–2314 (2010).
[CrossRef]

T. Schneider, K. Jamshidi, and S. Preußler, “Quasi-light Storage: a method for the tunable storage of optical packets with a potential delay-bandwidth product of several thousand bits,” J. Lightwave Technol. 28(17), 2586–2592 (2010).
[CrossRef]

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long range sensing using Brillouin echos,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (4)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011).
[CrossRef]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[CrossRef]

L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[CrossRef]

Opt. Express (9)

T. Schneider, R. Henker, K.-U. Lauterbach, and M. Junker, “Comparison of delay enhancement mechanisms for SBS-based slow light systems,” Opt. Express 15(15), 9606–9613 (2007).
[CrossRef] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[CrossRef] [PubMed]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
[CrossRef] [PubMed]

M. Sagues and A. Loayssa, “Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering,” Opt. Express 18(22), 22906–22914 (2010).
[CrossRef] [PubMed]

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express 19(9), 8565–8570 (2011).
[CrossRef] [PubMed]

A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
[CrossRef] [PubMed]

Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19(27), 25873–25880 (2011).
[CrossRef] [PubMed]

S. Preußler, K. Jamshidi, A. Wiatrek, R. Henker, C.-A. Bunge, and T. Schneider, “Quasi-light-storage based on time-frequency coherence,” Opt. Express 17(18), 15790–15798 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

Photon. Technol. Lett. (1)

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” Photon. Technol. Lett. 20(16), 1420–1422 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of a polarization-enhanced SBS-OSA arrangement. Relative frequencies of pump components and the signal under test are shown in the inset box.

Fig. 2
Fig. 2

Calculated SBS power amplification of a signal under test | H( Δf ) | 2 (left), and the normalized power gain | H( Δf ) | 2 / | H( Δf=0 ) | 2 (right), for various processes. The simulation parameters were L = 20 km, Γ B = 2π⋅40 MHz, g 0 = 0.1 [m⋅W]−1. Dashed curves: scalar Brillouin amplification for a single gain line (black, P = 4 mW), and combined gain and two losses (red, P = 9 mW, m = 0.45, d = 0.3 Γ B ). Solid curves: corresponding polarization assisted SBS amplification for a single gain line (black), and combined gain and two losses (red). The polarization assisted process is seen to effectively reject the optical power of unamplified spectral components of the signal under test. This rejection is more effective when the gain is combined with two losses at its edges.

Fig. 3
Fig. 3

An experimental setup for the realization of an ultra-high resolution optical spectrum analyzer. The grey block implements a scanning of the central frequency of a signal under test; the green block introduces modulation sidebands to the signal under test; the SBS gain pump is generated in the yellow block, whereas the two SBS loss pumps are generated in the blue block. The magenta block describes the detection scheme. Insets (1) through (3) denote the relative frequencies of the signal under test, the amplifying Brillouin pump and the attenuating Brillouin pumps, respectively. FL: narrow linewidth fiber laser, DFB: distributed feedback laser diode, MZM: Mach-Zehnder modulator, EDFA: erbium doped fiber amplifier, PC: polarization controller, C: circulator, PBS: polarization beam splitter, PD: photo diode, OSA: commercial optical spectrum analyzer used for monitoring the experiment.

Fig. 4
Fig. 4

Measured normalized gain of several SBS processes as a function of the detuning of the probe wave from its frequency of maximum amplification. A 20-km long standard fiber was used as the SBS gain medium. Black: a scalar process with a single amplifying pump, P = 4 mW. Red: a polarization-enhanced process with a single amplifying pump. Blue: a composite process comprised of a central gain line and two losses, with polarization enhancement, P = 9 mW, m = 0.45, d = 2π⋅8 MHz. A carefully adjusted output polarizer reduces the SBS gain marginally, but at the same time suppresses the unamplified spectral components of the signal and leads to a bandwidth reduction of around 50% (red). With two loss lines to the sides of the gain line, the bandwidth can be reduced by more than an order of magnitude. However, the SBS amplification is reduced by about 15 dB (blue).

Fig. 5
Fig. 5

Enhancement of the optical rejection ratio of SBS-OSA by the polarization pulling effect. The signal under test was modulated by a 30 MHz sine wave. Blue, red and green curves correspond to polarization-enhanced measurements of signals that were modulated using different RF power levels. A single amplifying pump was used, P = 9 mW. Black: an example of a corresponding measurement using a scalar SBS-OSA. By virtue of polarization pulling, the optical rejection ratio is considerably improved, and spectral components 30 dB lower than the maximum level are clearly visible.

Fig. 6
Fig. 6

Normalized, measured spectra of amplitude-modulated signals under test, on a linear scale. The modulation frequency was changed from 10 MHz down to 3 MHz. The inset shows the normalized, measured spectra for modulation frequencies of 10 and 7 MHz in a logarithmic scale. The drive voltage to the MZM had to be modified for different modulation rates due to limitations of the particular device, hence the inconsistent spectral shape.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( ω sig ,z=0 )= E 0 ( ω sig )( a e ^ max in +b e ^ min in ).
E ( ω sig ,z=L )= E 0 ( ω sig )[ a G max ( ω sig ) e ^ max out +b G min ( ω sig ) e ^ min out ].
| E out ( ω sig ) | 2 = | E 0 ( ω sig ) | 2 | a p max G max ( ω sig )+b p min G min ( ω sig ) | 2 .
| E out ( ω sig ) | 2 = | a p max | 2 | G max ( ω sig ) G min ( ω sig ) | 2 | E 0 ( ω sig ) | 2 . | H( ω sig ) | 2 | E 0 ( ω sig ) | 2 .
| H( ω sig ) | 2 0.25 | G max ( ω sig ) | 2 =0.25exp{ 2 3 Re[ g( ω sig ) ]L },
g( ω sig )= g 0 P ( 12j ω sig ω sig 0 Γ B ) 1 m g 0 P ( 12j ω sig ω sig 0 d Γ B ) 1 m g 0 P ( 12j ω sig ω sig 0 +d Γ B ) 1 .

Metrics